mlx-examples/llms/mlx_lm/models/minicpm.py
otriscon 46da74fea2
Unify attention mask in LLMs (#911)
* Unify attention mask creation in LLMs.

Currently, each model implementation in `mlx-examples/llms/models` has ad-hoc
code to create a mask for the attention mechanism. This usually takes the form:

```
    mask = None
    if h.shape[1] > 1:
        mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
        mask = mask.astype(h.dtype)
```

This correctly creates a mask only if the input consists of more than one token.
But this code assumes the multi-token input is at the beginning of inference.
If, for example, we are evaluating multiple tokens because of speculative
decoding or prompt cache reuse, this mask will not have the correct shape and
and will cause the raising of an exception in the attention computation.

Some of the models correctly implement the mask creation with code like this:

```
    mask = None
    if h.shape[1] > 1:
        mask = create_additive_causal_mask(
            h.shape[1], cache[0].offset if cache is not None else 0
        )
        mask = mask.astype(h.dtype)
```

This commit unifies the attention mask creation for all models with a new
function `create_attention_mask`, reducing code duplication and helping all
models support inference performance enhancements like those mentioned above.

* Allow batches in LLM key-value cache

The current implementation of the LLM key-value cache assumes that
the input batch is of size 1. Input batching (evaluating multiple
alterative inputs at the same time) can be a valuable tool for
speculative sampling and other techniques.

This change removes the hard-coded batch size from the code that
resizes the key-value cache.

* Simplify causal mask creation

Use the same codepath regardless of whether there's an offset or
not. Addresses [this comment](https://github.com/ml-explore/mlx-examples/pull/911#discussion_r1691459717).

* Use old-style type annotation to avoid linter error
2024-07-25 16:45:22 -07:00

214 lines
6.4 KiB
Python

from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import mlx.core as mx
import mlx.nn as nn
import numpy as np
from .base import BaseModelArgs, create_attention_mask
@dataclass
class ModelArgs(BaseModelArgs):
model_type: str
hidden_size: int
dim_model_base: int
num_hidden_layers: int
intermediate_size: int
num_attention_heads: int
rms_norm_eps: float
vocab_size: int
num_key_value_heads: int
scale_depth: float
scale_emb: float
rope_theta: float = 1000000.0
rope_traditional: bool = False
rope_scaling: Optional[Dict[str, Union[str, float]]] = None
tie_word_embeddings: bool = False
class MLP(nn.Module):
def __init__(self, args):
super().__init__()
self.gate_proj = nn.Linear(args.hidden_size, args.intermediate_size, bias=False)
self.up_proj = nn.Linear(args.hidden_size, args.intermediate_size, bias=False)
self.down_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=False)
def __call__(self, x):
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
class Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.hidden_size = args.hidden_size
self.num_heads = n_heads = args.num_attention_heads
self.rope_theta = args.rope_theta
self.head_dim = head_dim = args.hidden_size // n_heads
self.scale = head_dim**-0.5
self.num_key_value_heads = args.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.q_proj = nn.Linear(
self.hidden_size, self.num_heads * self.head_dim, bias=False
)
self.k_proj = nn.Linear(
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
)
self.v_proj = nn.Linear(
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
)
self.o_proj = nn.Linear(
self.num_heads * self.head_dim, self.hidden_size, bias=False
)
rope_scale = (
1 / args.rope_scaling["factor"]
if args.rope_scaling is not None and args.rope_scaling["type"] == "linear"
else 1
)
self.rope = nn.RoPE(
dims=self.head_dim,
traditional=args.rope_traditional,
base=self.rope_theta,
scale=rope_scale,
)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
):
B, L, _ = x.shape
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
queries = queries.reshape(B, L, self.num_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L, self.num_key_value_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L, self.num_key_value_heads, -1).transpose(
0, 2, 1, 3
)
if cache is not None:
queries = self.rope(queries, offset=cache.offset)
keys = self.rope(keys, offset=cache.offset)
keys, values = cache.update_and_fetch(keys, values)
else:
queries = self.rope(queries)
keys = self.rope(keys)
attn_output = mx.fast.scaled_dot_product_attention(
queries, keys, values, scale=self.scale, mask=mask
)
attn_output = attn_output.transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.o_proj(attn_output)
class DecoderLayer(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.hidden_size = args.hidden_size
self.num_hidden_layers = args.num_hidden_layers
self.self_attn = Attention(args)
self.mlp = MLP(args)
self.input_layernorm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
self.post_attention_layernorm = nn.RMSNorm(
args.hidden_size, eps=args.rms_norm_eps
)
self.scale_depth = args.scale_depth
self.num_hidden_layers = args.num_hidden_layers
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
r = self.self_attn(self.input_layernorm(x), mask, cache)
h = x + r * (self.scale_depth / np.sqrt(self.num_hidden_layers))
r = self.mlp(self.post_attention_layernorm(h))
out = h + r * (self.scale_depth / np.sqrt(self.num_hidden_layers))
return out
class MiniCPMModel(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.vocab_size = args.vocab_size
assert self.vocab_size > 0
self.embed_tokens = nn.Embedding(args.vocab_size, args.hidden_size)
self.layers = [DecoderLayer(args) for _ in range(args.num_hidden_layers)]
self.norm = nn.RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
def __call__(
self,
inputs: mx.array,
cache=None,
):
h = self.embed_tokens(inputs) * self.args.scale_emb
mask = create_attention_mask(h, cache)
if cache is None:
cache = [None] * len(self.layers)
for layer, c in zip(self.layers, cache):
h = layer(h, mask, c)
return self.norm(h)
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.model_type = args.model_type
self.model = MiniCPMModel(args)
if not self.args.tie_word_embeddings:
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
def __call__(
self,
inputs: mx.array,
cache=None,
):
out = self.model(inputs, cache)
if not self.args.tie_word_embeddings:
out = self.lm_head(out / (self.args.hidden_size / self.args.dim_model_base))
else:
out = out @ self.model.embed_tokens.weight.T
return out
def sanitize(self, weights):
if "lm_head.weight" not in weights:
weights["lm_head.weight"] = weights["model.embed_tokens.weight"]
return weights
@property
def layers(self):
return self.model.layers
@property
def head_dim(self):
return self.args.hidden_size // self.args.num_attention_heads
@property
def n_kv_heads(self):
return self.args.num_key_value_heads