mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00

* top_p refactor * top_k and min_p refactor * Create sampler chain * Remove unnecessary mx.where * Use mx.allclose
99 lines
3.6 KiB
Python
99 lines
3.6 KiB
Python
import unittest
|
|
|
|
import mlx.core as mx
|
|
from mlx_lm.sample_utils import apply_min_p, apply_top_k, apply_top_p
|
|
|
|
|
|
class TestSampleUtils(unittest.TestCase):
|
|
def test_apply_top_p(self):
|
|
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
|
logits = mx.log(probs)
|
|
|
|
new_logits = apply_top_p(logits, 0.3)
|
|
actual_probs = mx.softmax(new_logits.squeeze())
|
|
self.assertEqual(actual_probs.tolist(), [1.0, 0.0, 0.0, 0.0])
|
|
|
|
new_logits = apply_top_p(logits, 0.95)
|
|
actual_probs = mx.softmax(new_logits.squeeze())
|
|
self.assertTrue(mx.allclose(probs.squeeze(), actual_probs))
|
|
|
|
probs = mx.array([0.0, 0.5, 0.4, 0.1])[None]
|
|
logits = mx.log(probs)
|
|
new_logits = apply_top_p(logits, 0.4)
|
|
actual_probs = mx.softmax(new_logits.squeeze())
|
|
self.assertEqual(actual_probs.tolist(), [0.0, 1.0, 0.0, 0.0])
|
|
|
|
new_logits = apply_top_p(logits, 0.6)
|
|
actual_probs = mx.softmax(new_logits.squeeze())
|
|
self.assertEqual(
|
|
[round(p, 4) for p in actual_probs.tolist()], [0.0, 0.5556, 0.4444, 0.0]
|
|
)
|
|
|
|
new_logits = apply_top_p(logits, 0.95)
|
|
actual_probs = mx.softmax(new_logits.squeeze())
|
|
actual_rounded = [round(p, 4) for p in actual_probs.tolist()]
|
|
expected_rounded = [0.0, 0.5, 0.4, 0.1]
|
|
self.assertEqual(actual_rounded, expected_rounded)
|
|
self.assertAlmostEqual(sum(actual_probs.tolist()), 1.0)
|
|
|
|
# Batch mode works
|
|
probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.1, 0.1]])
|
|
logits = mx.log(probs)
|
|
new_logits = apply_top_p(logits, 0.5)
|
|
actual_probs = mx.softmax(new_logits, axis=-1)
|
|
self.assertEqual(
|
|
actual_probs.tolist(), [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0]]
|
|
)
|
|
|
|
def test_apply_min_p(self):
|
|
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
|
logits = mx.log(probs)
|
|
new_logits = apply_min_p(logits, 0.8)
|
|
actual_probs = mx.softmax(new_logits.squeeze())
|
|
self.assertEqual(actual_probs.tolist(), [1.0, 0.0, 0.0, 0.0])
|
|
|
|
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
|
logits = mx.log(probs)
|
|
new_logits = apply_min_p(logits, 0.05)
|
|
actual_probs = mx.softmax(new_logits.squeeze())
|
|
self.assertTrue(mx.allclose(actual_probs, mx.squeeze(probs)))
|
|
|
|
# Batch mode works
|
|
probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.0, 0.1]])
|
|
logits = mx.log(probs)
|
|
new_logits = apply_min_p(logits, 0.7)
|
|
actual_probs = mx.softmax(new_logits, axis=-1)
|
|
self.assertEqual(
|
|
actual_probs.tolist(), [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0]]
|
|
)
|
|
|
|
def test_apply_top_k(self):
|
|
probs = mx.array([0.9, 0.0, 0.0, 0.1])[None]
|
|
logits = mx.log(probs)
|
|
|
|
new_logits = apply_top_k(logits, 1)
|
|
actual_probs = mx.softmax(new_logits.squeeze())
|
|
self.assertEqual(actual_probs.tolist(), [1.0, 0.0, 0.0, 0.0])
|
|
|
|
probs = mx.array([0.6, 0.0, 0.1, 0.3])[None]
|
|
logits = mx.log(probs)
|
|
new_logits = apply_top_k(logits, 2)
|
|
actual_probs = mx.softmax(new_logits.squeeze())
|
|
self.assertEqual(
|
|
[round(p, 4) for p in actual_probs.tolist()], [0.6667, 0.0, 0.0, 0.3333]
|
|
)
|
|
|
|
# Batch mode works
|
|
probs = mx.array([[0.9, 0.0, 0.0, 0.1], [0.0, 0.8, 0.0, 0.1]])
|
|
logits = mx.log(probs)
|
|
|
|
new_logits = apply_top_k(logits, 1)
|
|
actual_probs = mx.softmax(new_logits, axis=-1)
|
|
self.assertEqual(
|
|
actual_probs.tolist(), [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0]]
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|