Examples in the MLX framework
mlx
Go to file
Juarez Bochi 4c9db80ed2
Add support for byt5 models (#161)
* Add support for byt5 models

* Remove unused import
2023-12-21 08:46:36 -08:00
bert Add llms subdir + update README (#145) 2023-12-20 10:22:25 -08:00
cifar Add llms subdir + update README (#145) 2023-12-20 10:22:25 -08:00
gcn Add llms subdir + update README (#145) 2023-12-20 10:22:25 -08:00
llms update path to load weights (#164) 2023-12-21 06:31:17 -08:00
lora 1. Add user warning for sequences over 2048 tokens in iterate_batches. (#166) 2023-12-21 06:29:31 -08:00
mnist Add llms subdir + update README (#145) 2023-12-20 10:22:25 -08:00
speechcommands updated results (#165) 2023-12-21 06:30:17 -08:00
stable_diffusion Add llms subdir + update README (#145) 2023-12-20 10:22:25 -08:00
t5 Add support for byt5 models (#161) 2023-12-21 08:46:36 -08:00
transformer_lm Add llms subdir + update README (#145) 2023-12-20 10:22:25 -08:00
whisper Add llms subdir + update README (#145) 2023-12-20 10:22:25 -08:00
.gitignore Benchmark all models if user allows. 2023-12-07 00:07:42 +05:30
.pre-commit-config.yaml Add llms subdir + update README (#145) 2023-12-20 10:22:25 -08:00
ACKNOWLEDGMENTS.md Added Keyword Spotting Transformer + SpeechCommands example (#123) 2023-12-19 14:17:48 -08:00
CODE_OF_CONDUCT.md contribution + code of conduct 2023-11-29 12:31:18 -08:00
CONTRIBUTING.md Update CONTRIBUTING.md 2023-12-09 08:02:34 +09:00
LICENSE consistent copyright 2023-11-30 11:11:04 -08:00
README.md Add llms subdir + update README (#145) 2023-12-20 10:22:25 -08:00

MLX Examples

This repo contains a variety of standalone examples using the MLX framework.

The MNIST example is a good starting point to learn how to use MLX.

Some more useful examples are listed below.

Text Models

Image Models

Audio Models

Other Models

  • Semi-supervised learning on graph-structured data with GCN.

Hugging Face

Note: You can now directly download a few converted checkpoints from the MLX Community organization on Hugging Face. We encourage you to join the community and contribute new models.

Contributing

We are grateful for all of our contributors. If you contribute to MLX Examples and wish to be acknowledged, please add your name to to the list in your pull request.

Citing MLX Examples

The MLX software suite was initially developed with equal contribution by Awni Hannun, Jagrit Digani, Angelos Katharopoulos, and Ronan Collobert. If you find MLX Examples useful in your research and wish to cite it, please use the following BibTex entry:

@software{mlx2023,
  author = {Awni Hannun and Jagrit Digani and Angelos Katharopoulos and Ronan Collobert},
  title = {{MLX}: Efficient and flexible machine learning on Apple silicon},
  url = {https://github.com/ml-explore},
  version = {0.0},
  year = {2023},
}