mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-09-01 12:49:50 +08:00
356 lines
13 KiB
Python
356 lines
13 KiB
Python
# Copyright © 2023 Apple Inc.
|
|
|
|
import argparse
|
|
import json
|
|
import math
|
|
import time
|
|
from pathlib import Path
|
|
from typing import List, Optional, Tuple
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
import mlx.optimizers as optim
|
|
import numpy as np
|
|
from mlx.utils import tree_flatten, tree_map, tree_unflatten
|
|
from models import LoRALinear, Model, ModelArgs
|
|
from sentencepiece import SentencePieceProcessor
|
|
|
|
class Tokenizer:
|
|
def __init__(self, model_path: str):
|
|
assert Path(model_path).exists(), model_path
|
|
self._model = SentencePieceProcessor(model_file=model_path)
|
|
self._sep = "▁"
|
|
assert self._model.vocab_size() == self._model.get_piece_size()
|
|
|
|
def encode(self, s: str, eos: bool = False) -> List[int]:
|
|
toks = [self._model.bos_id(), *self._model.encode(s)]
|
|
if eos:
|
|
toks.append(self.eos_id)
|
|
return toks
|
|
|
|
@property
|
|
def eos_id(self) -> int:
|
|
return self._model.eos_id()
|
|
|
|
def decode(self, t: List[int]) -> str:
|
|
out = self._model.decode(t)
|
|
if t and self._model.id_to_piece(t[0])[0] == self._sep:
|
|
return " " + out
|
|
return out
|
|
|
|
@property
|
|
def vocab_size(self) -> int:
|
|
return self._model.vocab_size()
|
|
|
|
|
|
class Dataset:
|
|
"""
|
|
Light-weight wrapper to hold lines from a jsonl file
|
|
"""
|
|
|
|
def __init__(self, path: Path, key: str = "text"):
|
|
if not path.exists():
|
|
self._data = None
|
|
else:
|
|
with open(path, "r") as fid:
|
|
self._data = [json.loads(l) for l in fid]
|
|
self._key = key
|
|
|
|
def __getitem__(self, idx: int):
|
|
return self._data[idx][self._key]
|
|
|
|
def __len__(self):
|
|
return len(self._data)
|
|
|
|
|
|
def load(data_path, train_or_test: str = "train"):
|
|
names = ("train", "valid", "test")
|
|
train, valid, test = (Dataset(Path(data_path) / f"{n}.jsonl") for n in names)
|
|
if train_or_test == "train" and len(train) == 0:
|
|
raise ValueError(
|
|
"Training set not found or empty. Must provide training set for fine-tuning."
|
|
)
|
|
if train_or_test == "train" and len(valid) == 0:
|
|
raise ValueError(
|
|
"Validation set not found or empty. Must provide validation set for fine-tuning."
|
|
)
|
|
if train_or_test == "test" and len(test) == 0:
|
|
raise ValueError(
|
|
"Test set not found or empty. Must provide test set for evaluation."
|
|
)
|
|
return train, valid, test
|
|
|
|
|
|
def loss(model, inputs, targets, lengths):
|
|
# Run model on inputs
|
|
logits, _ = model(inputs)
|
|
logits = logits.astype(mx.float32)
|
|
|
|
# Mask padding tokens
|
|
length_mask = mx.arange(inputs.shape[1])[None, :] < lengths[:, None]
|
|
|
|
# Calculate the loss
|
|
ce = nn.losses.cross_entropy(logits, targets) * length_mask
|
|
ntoks = length_mask.sum()
|
|
ce = ce.sum() / ntoks
|
|
return ce, ntoks
|
|
|
|
|
|
def iterate_batches(dset, tokenizer, batch_size, train=False):
|
|
# Shuffle indices
|
|
while True:
|
|
indices = np.arange(len(dset))
|
|
if train:
|
|
indices = np.random.permutation(indices)
|
|
|
|
# Collect batches from dataset
|
|
for i in range(0, len(indices) - batch_size + 1, batch_size):
|
|
# Encode batch
|
|
batch = [
|
|
tokenizer.encode(dset[indices[i + j]], eos=True)
|
|
for j in range(batch_size)
|
|
]
|
|
lengths = [len(x) for x in batch]
|
|
|
|
# Check if any sequence is longer than 2048 tokens
|
|
if max(lengths) > 2048:
|
|
print("Warning: Some sequences are longer than 2048 tokens. Consider pre-splitting your data to save memory.")
|
|
|
|
# Pad to the max length
|
|
batch_arr = np.zeros((batch_size, max(lengths)), np.int32)
|
|
for j in range(batch_size):
|
|
batch_arr[j, : lengths[j]] = batch[j]
|
|
batch = mx.array(batch_arr)
|
|
yield batch[:, :-1], batch[:, 1:], mx.array(lengths)
|
|
|
|
if not train:
|
|
break
|
|
|
|
|
|
def evaluate(model, dataset, loss, tokenizer, batch_size, num_batches):
|
|
all_losses = []
|
|
ntokens = 0
|
|
for it, batch in zip(
|
|
range(num_batches),
|
|
iterate_batches(dataset, tokenizer, batch_size),
|
|
):
|
|
losses, toks = loss(model, *batch)
|
|
all_losses.append((losses * toks).item())
|
|
ntokens += toks.item()
|
|
|
|
return np.sum(all_losses) / ntokens
|
|
|
|
|
|
def train(model, train_set, val_set, optimizer, loss, tokenizer, iters, batch_size, val_batches, steps_per_report, steps_per_eval):
|
|
# Create value and grad function for loss
|
|
loss_value_and_grad = nn.value_and_grad(model, loss)
|
|
|
|
losses = []
|
|
n_tokens = 0
|
|
|
|
# Main training loop
|
|
start = time.perf_counter()
|
|
for it, batch in zip(
|
|
range(iters),
|
|
iterate_batches(train_set, tokenizer, batch_size, train=True),
|
|
):
|
|
# Forward and backward pass
|
|
(lvalue, toks), grad = loss_value_and_grad(model, *batch)
|
|
|
|
# Model update
|
|
optimizer.update(model, grad)
|
|
mx.eval(model.parameters(), optimizer.state, lvalue)
|
|
|
|
# Record loss
|
|
losses.append(lvalue.item())
|
|
n_tokens += toks.item()
|
|
|
|
# Report training loss if needed
|
|
if (it + 1) % steps_per_report == 0:
|
|
train_loss = np.mean(losses)
|
|
|
|
stop = time.perf_counter()
|
|
print(
|
|
f"Iter {it + 1}: Train loss {train_loss:.3f}, "
|
|
f"It/sec {steps_per_report / (stop - start):.3f}, "
|
|
f"Tokens/sec {float(n_tokens) / (stop - start):.3f}"
|
|
)
|
|
losses = []
|
|
n_tokens = 0
|
|
start = time.perf_counter()
|
|
|
|
# Report validation loss if needed
|
|
if it == 0 or (it + 1) % steps_per_eval == 0:
|
|
stop = time.perf_counter()
|
|
val_loss = evaluate(
|
|
model, val_set, loss, tokenizer, batch_size, val_batches
|
|
)
|
|
print(
|
|
f"Iter {it + 1}: "
|
|
f"Val loss {val_loss:.3f}, "
|
|
f"Val took {(time.perf_counter() - stop):.3f}s"
|
|
)
|
|
|
|
start = time.perf_counter()
|
|
|
|
|
|
def generate(model, prompt, tokenizer, temp: float = 0.8, num_tokens: int = 100):
|
|
print(prompt, end="", flush=True)
|
|
prompt = mx.array(tokenizer.encode(prompt))
|
|
|
|
def generate_step():
|
|
|
|
def sample(logits):
|
|
if temp == 0:
|
|
return mx.argmax(logits, axis=-1)
|
|
else:
|
|
return mx.random.categorical(logits * (1 / temp))
|
|
|
|
logits, cache = model(prompt[None])
|
|
y = sample(logits[:, -1, :])
|
|
yield y
|
|
|
|
while True:
|
|
logits, cache = model(y[:, None], cache)
|
|
y = sample(logits.squeeze(1))
|
|
yield y
|
|
|
|
tokens = []
|
|
for token, _ in zip(generate_step(), range(num_tokens)):
|
|
tokens.append(token)
|
|
|
|
if (len(tokens) % 10) == 0:
|
|
mx.eval(tokens)
|
|
s = tokenizer.decode([t.item() for t in tokens])
|
|
print(s, end="", flush=True)
|
|
tokens = []
|
|
|
|
mx.eval(tokens)
|
|
s = tokenizer.decode([t.item() for t in tokens])
|
|
# print(s, flush=True)
|
|
# returning just in case we need that
|
|
# TODO: why does s return an empty string?
|
|
return s
|
|
|
|
def load_model(folder: str, dtype=mx.float16):
|
|
model_path = Path(folder)
|
|
tokenizer = Tokenizer(str(model_path / "tokenizer.model"))
|
|
with open(model_path / "params.json", "r") as f:
|
|
config = json.loads(f.read())
|
|
if config.get("vocab_size", -1) < 0:
|
|
config["vocab_size"] = tokenizer.vocab_size
|
|
model_args = ModelArgs(**config)
|
|
weights = mx.load(str(model_path / "weights.npz"))
|
|
weights = tree_unflatten(list(weights.items()))
|
|
weights = tree_map(lambda p: p.astype(dtype), weights)
|
|
model = Model(model_args)
|
|
model.update(weights)
|
|
return model, tokenizer
|
|
|
|
def prepare_for_training(model_path, data_path: str = "data/", seed: int = 0, lora_layers: int = 16, train_or_test: str = "train"):
|
|
np.random.seed(seed)
|
|
|
|
print("Loading pretrained model")
|
|
model, tokenizer = load_model(model_path)
|
|
|
|
print("Loading datasets")
|
|
train_set, valid_set, test_set = load(data_path, train_or_test)
|
|
|
|
if train_or_test == "train":
|
|
# Freeze all layers other than LORA linears
|
|
model.freeze()
|
|
for l in model.layers[-lora_layers :]:
|
|
l.attention.wq = LoRALinear.from_linear(l.attention.wq)
|
|
l.attention.wv = LoRALinear.from_linear(l.attention.wv)
|
|
|
|
p = sum(v.size for _, v in tree_flatten(model.parameters())) / 10**6
|
|
print(f"Total parameters {p:.3f}M")
|
|
p = sum(v.size for _, v in tree_flatten(model.trainable_parameters())) / 10**6
|
|
print(f"Trainable parameters {p:.3f}M")
|
|
return model, tokenizer, train_set, valid_set
|
|
elif train_or_test == "test":
|
|
return model, tokenizer, test_set
|
|
# elif train_or_test == "generate":
|
|
# return model, tokenizer
|
|
else:
|
|
raise ValueError(f"Unknown train_or_test {train_or_test}")
|
|
|
|
|
|
def run_lora_finetuning(model_path: str, data_path: str = "data/", lora_layers: int = 16, batch_size: int = 4, iters: int = 1000, seed: int = 0,
|
|
resume_adapter_file: str = None, adapter_file: str = "adapters.npz", learning_rate: float = 1e-5,
|
|
val_batches: int = 25, steps_per_report: int = 10, steps_per_eval: int = 200):
|
|
"""
|
|
Fine-tune the LoRA model.
|
|
|
|
Parameters:
|
|
model (str): A path to the model files containing the tokenizer, weights, config.
|
|
data_path (str): Directory with {train, valid, test}.jsonl files.
|
|
lora_layers (int): Number of layers to fine-tune. Default is 16.
|
|
batch_size (int): Minibatch size. Default is 4.
|
|
iters (int): Iterations to train for. Default is 1000.
|
|
"""
|
|
# Training logic goes here
|
|
model, tokenizer, train_set, val_set = prepare_for_training(model_path, data_path, seed, lora_layers, train_or_test="train")
|
|
# Resume training the given adapters.
|
|
if resume_adapter_file is not None:
|
|
print(f"Loading pretrained adapters from {resume_adapter_file}")
|
|
model.load_weights(resume_adapter_file)
|
|
|
|
print("Training")
|
|
# TODO: make optimizer a param maybe?
|
|
opt = optim.Adam(learning_rate=learning_rate)
|
|
|
|
# Train model
|
|
train(model, train_set, val_set, opt, loss, tokenizer, iters, batch_size, val_batches, steps_per_report, steps_per_eval)
|
|
|
|
# Save adapter weights
|
|
mx.savez(adapter_file, **dict(tree_flatten(model.trainable_parameters())))
|
|
|
|
def run_lora_test(model_path, data_path: str = "data/", adapter_file: str = "adapters.npz", test_batches: int = 500, batch_size: int = 4):
|
|
|
|
print("Testing")
|
|
model, tokenizer, test_set = prepare_for_training(model_path, data_path, train_or_test="test")
|
|
model.load_weights(adapter_file)
|
|
|
|
test_loss = evaluate(
|
|
model,
|
|
test_set,
|
|
loss,
|
|
tokenizer,
|
|
batch_size,
|
|
num_batches=test_batches,
|
|
)
|
|
test_ppl = math.exp(test_loss)
|
|
|
|
print(f"Test loss {test_loss:.3f}, Test ppl {test_ppl:.3f}.")
|
|
return {"test_loss": test_loss, "test_ppl": test_ppl}
|
|
|
|
|
|
def run_lora_generate(model_path: str, num_tokens: int = 100, temp: float = 0.8, adapter_file: str = "adapters.npz", prompt: str = None):
|
|
"""
|
|
Generate text using the LoRA model.
|
|
|
|
Parameters:
|
|
model (str): A path to the model files containing the tokenizer, weights, config.
|
|
num_tokens (int): How many tokens to generate. Default is 100.
|
|
write_every (int): After how many tokens to detokenize. Default is 1.
|
|
temp (float): The sampling temperature. Default is 0.8.
|
|
prompt (str): The prompt for generation. Default is None.
|
|
val_batches (int): Number of validation batches, -1 uses the entire validation set. Default is 25.
|
|
learning_rate (float): Adam learning rate. Default is 1e-5.
|
|
steps_per_report (int): Number of training steps between loss reporting. Default is 10.
|
|
steps_per_eval (int): Number of training steps between validations. Default is 200.
|
|
resume_adapter_file (str): Load path to resume training with the given adapter weights. Default is None.
|
|
adapter_file (str): Save/load path for the trained adapter weights. Default is "adapters.npz".
|
|
test (bool): Evaluate on the test set after training. Default is False.
|
|
test_batches (int): Number of test set batches, -1 uses the entire test set. Default is 500.
|
|
seed (int): The PRNG seed. Default is 0.
|
|
"""
|
|
# Generation logic goes here
|
|
print("Generating")
|
|
model, tokenizer = load_model(model_path)
|
|
if adapter_file is not None:
|
|
model.load_weights(adapter_file)
|
|
else:
|
|
raise ValueError("Must provide adapter_file to generate text.")
|
|
return generate(model, prompt, tokenizer, temp, num_tokens) |