mlx-examples/llms/mlx_lm/tuner/trainer.py
Goekdeniz-Guelmez 57175b7b95 initial commit
2025-03-12 11:55:09 +01:00

338 lines
11 KiB
Python

# Copyright © 2024 Apple Inc.
import time
from dataclasses import dataclass, field
from pathlib import Path
import mlx.core as mx
import mlx.nn as nn
import numpy as np
from mlx.nn.utils import average_gradients
from mlx.utils import tree_flatten
def grad_checkpoint(layer):
"""
Update all instances of type(layer) to use gradient checkpointing.
"""
fn = type(layer).__call__
def checkpointed_fn(model, *args, **kwargs):
def inner_fn(params, *args, **kwargs):
model.update(params)
return fn(model, *args, **kwargs)
return mx.checkpoint(inner_fn)(model.trainable_parameters(), *args, **kwargs)
type(layer).__call__ = checkpointed_fn
@dataclass
class TrainingArgs:
batch_size: int = field(default=4, metadata={"help": "Minibatch size."})
iters: int = field(default=100, metadata={"help": "Iterations to train for."})
val_batches: int = field(
default=25,
metadata={
"help": "Number of validation batches, -1 uses the entire validation set."
},
)
steps_per_report: int = field(
default=10,
metadata={"help": "Number of training steps between loss reporting."},
)
steps_per_eval: int = field(
default=200, metadata={"help": "Number of training steps between validations."}
)
steps_per_save: int = field(
default=100, metadata={"help": "Save the model every number steps"}
)
max_seq_length: int = field(
default=2048, metadata={"help": "Maximum sequence length."}
)
adapter_file: str = field(
default="adapters.safetensors",
metadata={"help": "Save/load path for the trained adapter weights."},
)
grad_checkpoint: bool = field(
default=False,
metadata={"help": "Use gradient checkpointing to reduce memory use."},
)
def default_loss(model, batch, lengths):
inputs = batch[:, :-1]
targets = batch[:, 1:]
logits = model(inputs)
logits = logits.astype(mx.float32)
steps = mx.arange(1, targets.shape[1] + 1)
mask = mx.logical_and(steps >= lengths[:, 0:1], steps <= lengths[:, 1:])
ce = nn.losses.cross_entropy(logits, targets) * mask
ntoks = mask.sum()
ce = ce.sum() / ntoks
return ce, ntoks
def iterate_batches(
dataset,
tokenizer,
batch_size,
max_seq_length,
train=False,
):
# Sort by length:
idx = sorted(range(len(dataset)), key=lambda idx: len(dataset[idx]))
if len(dataset) < batch_size:
raise ValueError(
f"Dataset must have at least batch_size={batch_size}"
f" examples but only has {len(dataset)}."
)
# If running in distributed mode (N machines) then each one should skip N-1
# samples
step = mx.distributed.init().size()
if batch_size % step != 0:
raise ValueError("The batch size must be divisible by the number of workers")
# Make the batches:
batch_idx = [
idx[i : i + batch_size : step]
for i in range(0, len(idx) - batch_size + 1, batch_size)
]
while True:
indices = np.random.permutation(len(batch_idx))
for i in indices:
batch = [dataset[j] for j in batch_idx[i]]
if len(batch[0]) == 2:
batch, offsets = zip(*batch)
else:
offsets = [0] * len(batch)
lengths = [len(x) for x in batch]
if max(lengths) > max_seq_length:
print(
f"[WARNING] Some sequences are longer than {max_seq_length} tokens. "
f"The longest sentence {max(lengths)} will be truncated to {max_seq_length}. "
"Consider pre-splitting your data to save memory."
)
# Pad to the nearest multiple of 8 or the maximum length
pad_to = 8
max_length_in_batch = pad_to * ((max(lengths) + pad_to - 1) // pad_to)
max_length_in_batch = min(max_length_in_batch, max_seq_length)
batch_arr = np.zeros((batch_size // step, max_length_in_batch), np.int32)
for j in range(batch_size // step):
truncated_length = min(lengths[j], max_seq_length)
batch_arr[j, :truncated_length] = batch[j][:truncated_length]
lengths[j] = (
truncated_length # Update lengths to match truncated lengths
)
batch = mx.array(batch_arr)
yield batch, mx.array(list(zip(offsets, lengths)))
if not train:
break
def evaluate(
model,
dataset,
tokenizer,
batch_size,
num_batches,
max_seq_length=2048,
loss: callable = default_loss,
iterate_batches: callable = iterate_batches,
):
all_losses = mx.array(0.0)
ntokens = mx.array(0)
index_iterator = iter(range(num_batches)) if num_batches != -1 else iter(int, 1)
for _, batch in zip(
index_iterator,
iterate_batches(
dataset=dataset,
tokenizer=tokenizer,
batch_size=batch_size,
max_seq_length=max_seq_length,
),
):
losses, toks = loss(model, *batch)
all_losses += losses * toks
ntokens += toks
mx.eval(all_losses, ntokens)
all_losses = mx.distributed.all_sum(all_losses, stream=mx.cpu)
ntokens = mx.distributed.all_sum(ntokens, stream=mx.cpu)
return (all_losses / ntokens).item()
class TrainingCallback:
def on_train_loss_report(self, train_info: dict):
"""Called to report training loss at specified intervals."""
pass
def on_val_loss_report(self, val_info: dict):
"""Called to report validation loss at specified intervals or the beginning."""
pass
def train(
model,
tokenizer,
optimizer,
train_dataset,
val_dataset,
args: TrainingArgs = TrainingArgs(),
loss: callable = default_loss,
iterate_batches: callable = iterate_batches,
training_callback: TrainingCallback = None,
):
print(f"Starting training..., iters: {args.iters}")
world = mx.distributed.init()
world_size = world.size()
rank = world.rank()
if world_size > 1:
print(f"Node {rank} of {world_size}")
if args.grad_checkpoint:
grad_checkpoint(model.layers[0])
state = [model.state, optimizer.state]
def step(batch):
# Forward and backward pass
(lvalue, toks), grad = loss_value_and_grad(model, *batch)
# All reduce the gradients if running in distributed mode
grad = average_gradients(grad)
# Model update
optimizer.update(model, grad)
return lvalue, toks
loss_value_and_grad = nn.value_and_grad(model, loss)
losses = 0
n_tokens = 0
steps = 0
trained_tokens = 0
train_time = 0
# Main training loop
for it, batch in zip(
range(1, args.iters + 1),
iterate_batches(
dataset=train_dataset,
tokenizer=tokenizer,
batch_size=args.batch_size,
max_seq_length=args.max_seq_length,
train=True,
),
):
tic = time.perf_counter()
# Report validation loss if needed, the first validation loss
# is always measured before any training.
if it == 1 or it % args.steps_per_eval == 0 or it == args.iters:
tic = time.perf_counter()
val_loss = evaluate(
model=model,
dataset=val_dataset,
loss=loss,
tokenizer=tokenizer,
batch_size=args.batch_size,
num_batches=args.val_batches,
max_seq_length=args.max_seq_length,
iterate_batches=iterate_batches,
)
val_time = time.perf_counter() - tic
if rank == 0:
print(
f"Iter {it}: "
f"Val loss {val_loss:.3f}, "
f"Val took {val_time:.3f}s",
flush=True,
)
if training_callback is not None:
val_info = {
"iteration": it,
"val_loss": val_loss,
"val_time": val_time,
}
training_callback.on_val_loss_report(val_info)
tic = time.perf_counter()
lvalue, toks = step(batch)
losses += lvalue
n_tokens += toks
steps += 1
mx.eval(state, losses, n_tokens)
train_time += time.perf_counter() - tic
# Report training loss if needed
if it % args.steps_per_report == 0 or it == args.iters:
train_loss = mx.distributed.all_sum(losses, stream=mx.cpu).item()
train_loss /= steps * mx.distributed.init().size()
n_tokens = mx.distributed.all_sum(n_tokens, stream=mx.cpu).item()
learning_rate = optimizer.learning_rate.item()
it_sec = args.steps_per_report / train_time
tokens_sec = float(n_tokens) / train_time
trained_tokens += n_tokens
peak_mem = mx.metal.get_peak_memory() / 1e9
if rank == 0:
print(
f"Iter {it}: Train loss {train_loss:.3f}, "
f"Learning Rate {learning_rate:.3e}, "
f"It/sec {it_sec:.3f}, "
f"Tokens/sec {tokens_sec:.3f}, "
f"Trained Tokens {trained_tokens}, "
f"Peak mem {peak_mem:.3f} GB",
flush=True,
)
if training_callback is not None:
train_info = {
"iteration": it,
"train_loss": train_loss,
"learning_rate": learning_rate,
"iterations_per_second": it_sec,
"tokens_per_second": tokens_sec,
"trained_tokens": trained_tokens,
"peak_memory": peak_mem,
}
training_callback.on_train_loss_report(train_info)
losses = 0
n_tokens = 0
steps = 0
train_time = 0
# Save adapter weights
if it % args.steps_per_save == 0:
adapter_weights = dict(tree_flatten(model.trainable_parameters()))
mx.save_safetensors(str(args.adapter_file), adapter_weights)
checkpoint = (
Path(args.adapter_file).parent / f"{it:07d}_adapters.safetensors"
)
mx.save_safetensors(str(checkpoint), adapter_weights)
print(
f"Iter {it}: Saved adapter weights to "
f"{args.adapter_file} and {checkpoint}."
)
# Save final weights
adapter_weights = dict(tree_flatten(model.trainable_parameters()))
mx.save_safetensors(str(args.adapter_file), adapter_weights)
print(f"Saved final weights to {args.adapter_file}.")