mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 09:21:18 +08:00

- Optional completion only fine-tuning with `--mask-prompt` - Collections of Hugging Face datasets --------- Co-authored-by: Awni Hannun <awni@apple.com>
274 lines
7.9 KiB
Python
274 lines
7.9 KiB
Python
import itertools
|
|
import json
|
|
import types
|
|
from pathlib import Path
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
from transformers import PreTrainedTokenizer
|
|
|
|
|
|
class Dataset:
|
|
"""
|
|
Light-weight wrapper to hold a dataset.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
data: List[Dict[str, str]],
|
|
tokenizer: PreTrainedTokenizer,
|
|
text_key: str = "text",
|
|
):
|
|
self._data = [tokenizer.encode(d[text_key]) for d in data]
|
|
for d in self._data:
|
|
if d[-1] != tokenizer.eos_token_id:
|
|
d.append(tokenizer.eos_token_id)
|
|
|
|
def __getitem__(self, idx: int):
|
|
return self._data[idx]
|
|
|
|
def __len__(self):
|
|
return len(self._data)
|
|
|
|
|
|
class ChatDataset:
|
|
"""
|
|
A dataset for chat data in the format of {"messages": [...]}
|
|
https://platform.openai.com/docs/guides/fine-tuning/example-format
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
data: List[Dict[str, str]],
|
|
tokenizer: PreTrainedTokenizer,
|
|
chat_key: str = "messages",
|
|
mask_prompt: bool = False,
|
|
):
|
|
self._data = []
|
|
for d in data:
|
|
messages = d[chat_key]
|
|
tools = d.get("tools", None)
|
|
tokens = tokenizer.apply_chat_template(messages, tools=tools)
|
|
if mask_prompt:
|
|
messages = messages[:-1]
|
|
offset = len(tokenizer.apply_chat_template(messages, tools=tools))
|
|
self._data.append((tokens, offset))
|
|
else:
|
|
self._data.append(tokens)
|
|
|
|
def __getitem__(self, idx: int):
|
|
return self._data[idx]
|
|
|
|
def __len__(self):
|
|
return len(self._data)
|
|
|
|
|
|
class CompletionsDataset:
|
|
"""
|
|
A dataset for prompt-completion data in the format of {"prompt": ..., "completion": ...}
|
|
or using user-provided keys for prompt and completion values
|
|
https://platform.openai.com/docs/guides/fine-tuning/example-format
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
data: List[Dict[str, str]],
|
|
tokenizer: PreTrainedTokenizer,
|
|
prompt_key: str,
|
|
completion_key: str,
|
|
mask_prompt: bool,
|
|
):
|
|
self._data = []
|
|
for d in data:
|
|
tokens = tokenizer.apply_chat_template(
|
|
[
|
|
{"role": "user", "content": d[prompt_key]},
|
|
{"role": "assistant", "content": d[completion_key]},
|
|
],
|
|
)
|
|
if mask_prompt:
|
|
offset = len(
|
|
tokenizer.apply_chat_template(
|
|
[{"role": "user", "content": d[prompt_key]}]
|
|
)
|
|
)
|
|
self._data.append((tokens, offset))
|
|
else:
|
|
self._data.append(tokens)
|
|
|
|
def __getitem__(self, idx: int):
|
|
return self._data[idx]
|
|
|
|
def __len__(self):
|
|
return len(self._data)
|
|
|
|
|
|
class ConcatenatedDataset:
|
|
def __init__(self, data: List[Any]):
|
|
self._data = list(itertools.chain(*data))
|
|
|
|
def __getitem__(self, idx: int):
|
|
return self._data[idx]
|
|
|
|
def __len__(self):
|
|
return len(self._data)
|
|
|
|
|
|
def create_dataset(
|
|
data,
|
|
tokenizer: PreTrainedTokenizer,
|
|
config,
|
|
):
|
|
mask_prompt = getattr(config, "mask_prompt", False)
|
|
prompt_feature = getattr(config, "prompt_feature", "prompt")
|
|
text_feature = getattr(config, "text_feature", "text")
|
|
completion_feature = getattr(config, "completion_feature", "completion")
|
|
chat_feature = getattr(config, "chat_feature", "messages")
|
|
sample = data[0]
|
|
if prompt_feature in sample and completion_feature in sample:
|
|
return CompletionsDataset(
|
|
data, tokenizer, prompt_feature, completion_feature, mask_prompt
|
|
)
|
|
elif chat_feature in sample:
|
|
return ChatDataset(
|
|
data, tokenizer, chat_key=chat_feature, mask_prompt=mask_prompt
|
|
)
|
|
elif text_feature in sample:
|
|
if mask_prompt:
|
|
raise ValueError("Prompt masking not supported for text dataset.")
|
|
return Dataset(data, tokenizer, text_key=text_feature)
|
|
else:
|
|
raise ValueError(
|
|
"Unsupported data format, check the supported formats here:\n"
|
|
"https://github.com/ml-explore/mlx-examples/blob/main/llms/mlx_lm/LORA.md#data."
|
|
)
|
|
|
|
|
|
def load_local_dataset(
|
|
data_path: Path,
|
|
tokenizer: PreTrainedTokenizer,
|
|
config,
|
|
):
|
|
def load_subset(path):
|
|
if not path.exists():
|
|
return []
|
|
with open(path, "r") as fid:
|
|
data = [json.loads(l) for l in fid]
|
|
return create_dataset(data, tokenizer, config)
|
|
|
|
names = ("train", "valid", "test")
|
|
train, valid, test = [load_subset(data_path / f"{n}.jsonl") for n in names]
|
|
return train, valid, test
|
|
|
|
|
|
def load_hf_dataset(
|
|
data_id: str,
|
|
tokenizer: PreTrainedTokenizer,
|
|
config,
|
|
):
|
|
from datasets import exceptions, load_dataset
|
|
|
|
try:
|
|
dataset = load_dataset(data_id)
|
|
|
|
names = ("train", "valid", "test")
|
|
|
|
train, valid, test = [
|
|
(
|
|
create_dataset(dataset[n], tokenizer, config)
|
|
if n in dataset.keys()
|
|
else []
|
|
)
|
|
for n in names
|
|
]
|
|
|
|
except exceptions.DatasetNotFoundError:
|
|
raise ValueError(f"Not found Hugging Face dataset: {data_id} .")
|
|
|
|
return train, valid, test
|
|
|
|
|
|
def load_custom_hf_dataset(args, tokenizer: PreTrainedTokenizer):
|
|
import datasets
|
|
|
|
def create_hf_dataset(dataset_name, config, split, hf_config):
|
|
ds = datasets.load_dataset(
|
|
dataset_name,
|
|
split=split,
|
|
**hf_config,
|
|
)
|
|
return create_dataset(ds, tokenizer, config)
|
|
|
|
dataset_collection = args.hf_dataset
|
|
if isinstance(dataset_collection, dict):
|
|
dataset_collection = [dataset_collection]
|
|
|
|
collection = []
|
|
for ds in dataset_collection:
|
|
ds_name = ds["name"]
|
|
print(f"Loading Hugging Face dataset {ds_name}.")
|
|
ds["mask_prompt"] = getattr(args, "mask_prompt", False)
|
|
config = types.SimpleNamespace(**ds)
|
|
hf_config = ds.get("config", {})
|
|
if args.train:
|
|
train_split = ds.get("train_split", "train[:80%]")
|
|
valid_split = ds.get("valid_split", "train[-10%:]")
|
|
train = create_hf_dataset(
|
|
ds_name,
|
|
config,
|
|
train_split,
|
|
hf_config,
|
|
)
|
|
valid = create_hf_dataset(
|
|
ds_name,
|
|
config,
|
|
valid_split,
|
|
hf_config,
|
|
)
|
|
else:
|
|
train, valid = [], []
|
|
|
|
if args.test:
|
|
test_split = ds.get("test_split")
|
|
test = create_hf_dataset(
|
|
ds_name,
|
|
config,
|
|
test_split,
|
|
hf_config,
|
|
)
|
|
else:
|
|
test = []
|
|
|
|
collection.append((train, valid, test))
|
|
|
|
if len(collection) == 1:
|
|
return collection[0]
|
|
|
|
# Otherwise concatenate them
|
|
return tuple(map(ConcatenatedDataset, zip(*collection)))
|
|
|
|
|
|
def load_dataset(args, tokenizer: PreTrainedTokenizer):
|
|
if getattr(args, "hf_dataset", False):
|
|
train, valid, test = load_custom_hf_dataset(args, tokenizer)
|
|
else:
|
|
data_path = Path(args.data)
|
|
if data_path.exists():
|
|
train, valid, test = load_local_dataset(data_path, tokenizer, args)
|
|
else:
|
|
print(f"Loading Hugging Face dataset {args.data}.")
|
|
train, valid, test = load_hf_dataset(args.data, tokenizer, args)
|
|
|
|
if args.train and len(train) == 0:
|
|
raise ValueError(
|
|
"Training set not found or empty. Must provide training set for fine-tuning."
|
|
)
|
|
if args.train and len(valid) == 0:
|
|
raise ValueError(
|
|
"Validation set not found or empty. Must provide validation set for fine-tuning."
|
|
)
|
|
if args.test and len(test) == 0:
|
|
raise ValueError(
|
|
"Test set not found or empty. Must provide test set for evaluation."
|
|
)
|
|
return train, valid, test
|