mlx-examples/segment_anything/segment_anything/mask_decoder.py
Shiyu 8353bbbf93
Segment Anything Model (#552)
* add segment anything model

* add readme

* reorg file structure

* update

* lint

* minor updates

* ack

* fix weight loading

* simplify

* fix to run notebooks

* amg in mlx

* remove torch dependency

* nit in README

* return indices in nms

* simplify

* bugfix / simplify

* fix bug'

* simplify

* fix notebook and remove output

* couple more nits

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-06-02 16:45:51 -07:00

253 lines
8.1 KiB
Python

import math
from typing import List, Tuple, Type, Union
import mlx.core as mx
import mlx.nn as nn
from .common import LayerNorm2d
class MaskDecoder(nn.Module):
def __init__(
self,
*,
transformer_dim: int,
transformer: nn.Module,
num_multimask_outputs: int = 3,
activation: Type[nn.Module] = nn.GELU,
iou_head_depth: int = 3,
iou_head_hidden_dim: int = 256,
) -> None:
"""
Predicts masks given an image and prompt embeddings, using a
transformer architecture.
Args:
transformer_dim (int): the channel dimension of the transformer
transformer (nn.Module): the transformer used to predict masks
num_multimask_outputs (int): the number of masks to predict
when disambiguating masks
activation (nn.Module): the type of activation to use when
upscaling masks
iou_head_depth (int): the depth of the MLP used to predict
mask quality
iou_head_hidden_dim (int): the hidden dimension of the MLP
used to predict mask quality
"""
super().__init__()
self.transformer_dim = transformer_dim
self.transformer = transformer
self.num_multimask_outputs = num_multimask_outputs
self.iou_token = nn.Embedding(1, transformer_dim)
self.num_mask_tokens = num_multimask_outputs + 1
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
self.upscale_conv1 = ConvTranspose2d(
transformer_dim,
transformer_dim // 4,
kernel_size=2,
stride=2,
padding=1,
)
self.upscale_layer_norm = LayerNorm2d(transformer_dim // 4)
self.activation = activation()
self.upscale_conv2 = ConvTranspose2d(
transformer_dim // 4,
transformer_dim // 8,
kernel_size=2,
stride=2,
padding=1,
)
self.output_hypernetworks_mlps = [
MLP(transformer_dim, transformer_dim, transformer_dim // 8, 1)
for i in range(self.num_mask_tokens)
]
self.iou_prediction_head = MLP(
transformer_dim,
iou_head_hidden_dim,
self.num_mask_tokens,
iou_head_depth - 2,
)
def __call__(
self,
image_embeddings: mx.array,
image_pe: mx.array,
sparse_prompt_embeddings: mx.array,
dense_prompt_embeddings: mx.array,
multimask_output: bool,
) -> Tuple[mx.array, mx.array]:
"""
Predict masks given image and prompt embeddings.
Args:
image_embeddings (mx.array): the embeddings from the image encoder
image_pe (mx.array): positional encoding
sparse_prompt_embeddings (mx.array): the embeddings of the points and boxes
dense_prompt_embeddings (mx.array): the embeddings of the mask inputs
multimask_output (bool): Whether to return multiple masks or a single
mask.
Returns:
mx.array: batched predicted masks
mx.array: batched predictions of mask quality
"""
masks, iou_pred = self.predict_masks(
image_embeddings=image_embeddings,
image_pe=image_pe,
sparse_prompt_embeddings=sparse_prompt_embeddings,
dense_prompt_embeddings=dense_prompt_embeddings,
)
# Select the correct mask or masks for output
if multimask_output:
mask_slice = slice(1, None)
else:
mask_slice = slice(0, 1)
masks = masks[:, :, :, mask_slice]
iou_pred = iou_pred[:, mask_slice]
# Prepare output
return masks, iou_pred
def predict_masks(
self,
image_embeddings: mx.array,
image_pe: mx.array,
sparse_prompt_embeddings: mx.array,
dense_prompt_embeddings: mx.array,
) -> Tuple[mx.array, mx.array]:
"""Predicts masks. See '__call__' for more details."""
# Concatenate output tokens
output_tokens = mx.concatenate(
[self.iou_token.weight, self.mask_tokens.weight], axis=0
)
output_tokens = mx.broadcast_to(
output_tokens[None],
[
sparse_prompt_embeddings.shape[0],
output_tokens.shape[0],
output_tokens.shape[1],
],
)
tokens = mx.concatenate((output_tokens, sparse_prompt_embeddings), axis=1)
# Expand per-image data in batch direction to be per-mask
src = mx.repeat(image_embeddings, repeats=tokens.shape[0], axis=0)
src = src + dense_prompt_embeddings
b, h, w, c = src.shape
# Run the transformer
hs, src = self.transformer(src, image_pe, tokens)
iou_token_out = hs[:, 0, :]
mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
# Upscale mask embeddings and predict masks using the mask tokens
src = src.reshape(b, h, w, c)
src = self.upscale_conv1(src)
src = self.upscale_layer_norm(src)
src = self.activation(src)
src = self.upscale_conv2(src)
upscaled_embedding = self.activation(src)
hyper_in_list: List[mx.array] = []
for i in range(self.num_mask_tokens):
hyper_in_list.append(
self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :])
)
hyper_in = mx.stack(hyper_in_list, axis=1)
b, h, w, c = upscaled_embedding.shape
masks = (
(hyper_in @ upscaled_embedding.reshape(b, h * w, c).transpose(0, 2, 1))
.transpose(0, 2, 1)
.reshape(b, h, w, -1)
)
# Generate mask quality predictions
iou_pred = self.iou_prediction_head(iou_token_out)
return masks, iou_pred
class MLP(nn.Module):
def __init__(
self,
input_dim: int,
hidden_dim: int,
output_dim: int,
num_layers: int,
sigmoid_output: bool = False,
) -> None:
super().__init__()
self.num_layers = num_layers
self.proj_in = nn.Linear(input_dim, hidden_dim)
self.layers = [nn.Linear(hidden_dim, hidden_dim) for _ in range(num_layers)]
self.proj_out = nn.Linear(hidden_dim, output_dim)
self.sigmoid_output = sigmoid_output
def __call__(self, x):
x = nn.relu(self.proj_in(x))
for i, layer in enumerate(self.layers):
x = nn.relu(layer(x))
x = self.proj_out(x)
if self.sigmoid_output:
x = mx.sigmoid(x)
return x
# TODO: Naive implem. Replace when mlx.nn support conv_transpose
class ConvTranspose2d(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, tuple],
stride: Union[int, tuple] = 1,
padding: Union[int, tuple] = 0,
dilation: Union[int, tuple] = 1,
bias: bool = True,
):
super().__init__()
kernel_size, stride, padding = map(
lambda x: (x, x) if isinstance(x, int) else x,
(kernel_size, stride, padding),
)
scale = math.sqrt(1 / (in_channels * kernel_size[0] * kernel_size[1]))
self.weight = mx.random.uniform(
low=-scale,
high=scale,
shape=(out_channels, *kernel_size, in_channels),
)
if bias:
self.bias = mx.zeros((out_channels,))
self.padding = padding
self.stride = stride
self.dilation = dilation
def _extra_repr(self):
return (
f"{self.weight.shape[-1]}, {self.weight.shape[0]}, "
f"kernel_size={self.weight.shape[1:2]}, stride={self.stride}, "
f"padding={self.padding}, dilation={self.dilation}, "
f"bias={'bias' in self}"
)
def __call__(self, x):
y = mx.conv_general(
x,
self.weight,
stride=1,
padding=self.padding,
kernel_dilation=self.dilation,
input_dilation=self.stride,
flip=True,
)
if "bias" in self:
y = y + self.bias
return y