mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-29 04:31:13 +08:00
424 lines
14 KiB
Python
424 lines
14 KiB
Python
import math
|
||
from dataclasses import dataclass, field
|
||
from typing import Optional, Tuple, Union
|
||
|
||
import mlx.core as mx
|
||
import mlx.nn as nn
|
||
|
||
from .base import BaseModelArgs
|
||
from .cache import Mamba2Cache
|
||
|
||
@dataclass
|
||
class ModelArgs(BaseModelArgs):
|
||
num_heads: int
|
||
head_dim: int
|
||
vocab_size: int
|
||
hidden_size: int
|
||
state_size: int
|
||
num_hidden_layers: int
|
||
layer_norm_epsilon: float
|
||
expand: int
|
||
conv_kernel: int
|
||
n_groups: int
|
||
use_bias: bool
|
||
use_conv_bias: bool
|
||
initializer_range: float
|
||
residual_in_fp32: bool
|
||
time_step_min: float
|
||
time_step_max: float
|
||
time_step_floor: float
|
||
rescale_prenorm_residual: bool
|
||
use_cache: bool
|
||
rms_norm: bool
|
||
chunk_size: int
|
||
tie_word_embeddings: bool
|
||
intermediate_size: int = None
|
||
time_step_limit: Tuple[float, float] = field(default_factory=lambda: (0.0, float("inf")))
|
||
time_step_rank: Union[int, str] = "auto"
|
||
model_type: str = "mamba2"
|
||
|
||
def __post_init__(self):
|
||
self.intermediate_size = int(self.expand * self.hidden_size) # E*D = ED
|
||
|
||
if not hasattr(self, "head_dim"):
|
||
self.head_dim = self.hidden_size // self.num_heads
|
||
if self.time_step_rank == "auto":
|
||
self.time_step_rank = math.ceil(self.hidden_size / 16)
|
||
|
||
|
||
def selective_scan(x, A, B, C, chunk_size):
|
||
"""
|
||
Selective scan implementation for training.
|
||
|
||
Arguments
|
||
x: (batch, seqlen, n_heads, d_head)
|
||
A: (batch, seqlen, n_heads)
|
||
B: (batch, seqlen, n_heads, d_state)
|
||
C: (batch, seqlen, n_heads, d_state)
|
||
|
||
Return
|
||
y: (batch, seqlen, n_heads, d_head)
|
||
"""
|
||
assert x.shape[1] % chunk_size == 0
|
||
|
||
# Reshape into chunks
|
||
def chunk_reshape(m):
|
||
shape = list(m.shape)
|
||
shape[1:2] = [shape[1] // chunk_size, chunk_size]
|
||
return m.reshape(shape)
|
||
|
||
x, A, B, C = map(chunk_reshape, (x, A, B, C))
|
||
A = mx.transpose(A, [0, 3, 1, 2])
|
||
|
||
# Compute cumulative sums
|
||
A_cumsum = mx.cumsum(A, axis=-1)
|
||
|
||
# Process chunks
|
||
L = mx.exp(selective_cumsum(A))
|
||
Y_diag = mx.einsum('bclhn,bcshn,bhcls,bcshp->bclhp', C, B, L, x)
|
||
|
||
decay_states = mx.exp(A_cumsum[..., -1:] - A_cumsum)
|
||
states = mx.einsum('bclhn,bhcl,bclhp->bchpn', B, decay_states, x)
|
||
|
||
initial_states = mx.zeros_like(states[:, :1])
|
||
states = mx.concatenate([initial_states, states], axis=1)
|
||
decay_chunk = mx.exp(selective_cumsum(mx.pad(A_cumsum[..., -1], ((0,0), (0,0), (1,0)))))
|
||
new_states = mx.einsum('bhzc,bchpn->bzhpn', decay_chunk, states)
|
||
states = new_states[:, :-1]
|
||
|
||
state_decay_out = mx.exp(A_cumsum)
|
||
Y_off = mx.einsum('bclhn,bchpn,bhcl->bclhp', C, states, state_decay_out)
|
||
|
||
Y = (Y_diag + Y_off).reshape((-1, x.shape[1] * chunk_size, *Y_diag.shape[-2:]))
|
||
return Y
|
||
|
||
def selective_cumsum(x: mx.array) -> mx.array:
|
||
"""Stable selective cumulative sum calculation."""
|
||
T = x.shape[-1]
|
||
x = mx.repeat(x[..., None], T, axis=-1)
|
||
mask = mx.tril(mx.ones((T, T)), k=-1)
|
||
x = x * mask
|
||
x_cumsum = mx.cumsum(x, axis=-2)
|
||
mask = mx.tril(mx.ones((T, T)), k=0)
|
||
return mx.where(mask, x_cumsum, float('-inf'))
|
||
|
||
|
||
class Mamba2Block(nn.Module):
|
||
def __init__(self, args: ModelArgs):
|
||
super().__init__()
|
||
self.args = args
|
||
|
||
# Project input to get various components [z, x, B, C, dt]
|
||
projection_size = (2 * args.intermediate_size + 2 * args.n_groups * args.state_size + args.num_heads)
|
||
self.in_proj = nn.Linear(
|
||
args.hidden_size,
|
||
projection_size,
|
||
bias=args.use_bias
|
||
)
|
||
|
||
# Convolution layer
|
||
conv_dim = args.intermediate_size + 2 * args.n_groups * args.state_size
|
||
self.conv1d = nn.Conv1d(
|
||
in_channels=conv_dim,
|
||
out_channels=conv_dim,
|
||
kernel_size=args.conv_kernel,
|
||
groups=conv_dim,
|
||
padding=args.conv_kernel - 1,
|
||
bias=args.use_conv_bias
|
||
)
|
||
|
||
# SSM parameters
|
||
self.dt_bias = mx.zeros(args.num_heads)
|
||
self.A_log = mx.zeros(args.num_heads)
|
||
self.D = mx.ones(args.num_heads)
|
||
|
||
# Output projections
|
||
self.norm = nn.RMSNorm(args.intermediate_size, eps=args.layer_norm_epsilon)
|
||
self.out_proj = nn.Linear(args.intermediate_size, args.hidden_size, bias=args.use_bias)
|
||
|
||
def __call__(self, u: mx.array, cache=None) -> mx.array:
|
||
# return self.forward_training(x) if x.shape[1] > 1 else self.forward_inference(x, cache)
|
||
|
||
# def forward_training(self, u: mx.array) -> mx.array:
|
||
# # Reset cache during training
|
||
# self.cache = None
|
||
|
||
# # Input projection and splitting
|
||
# zxbcdt = self.in_proj(u)
|
||
# z, xBC, dt = mx.split(
|
||
# zxbcdt,
|
||
# [
|
||
# self.args.hidden_size,
|
||
# self.args.hidden_size + 2 * self.args.state_size
|
||
# ],
|
||
# axis=-1
|
||
# )
|
||
|
||
# # Time step processing
|
||
# dt = mx.clip(
|
||
# nn.softplus(dt + self.dt_bias),
|
||
# self.args.time_step_min,
|
||
# self.args.time_step_max
|
||
# )
|
||
|
||
# # Convolution processing
|
||
# xBC_t = mx.transpose(xBC, [0, 2, 1])
|
||
# conv_out = self.conv1d(xBC_t)
|
||
# xBC = mx.transpose(conv_out, [0, 2, 1])[:, :u.shape[1]]
|
||
# xBC = mx.sigmoid(xBC) * xBC # SiLU
|
||
|
||
# # Split states
|
||
# x, B, C = mx.split(
|
||
# xBC,
|
||
# [self.args.hidden_size, self.args.state_size],
|
||
# axis=-1
|
||
# )
|
||
|
||
# # Reshape for selective scan
|
||
# x = x.reshape((-1, x.shape[1], self.args.num_heads, self.args.head_dim))
|
||
# A = -mx.exp(self.A_log)
|
||
|
||
# # Apply selective scan
|
||
# y = selective_scan(
|
||
# x * dt[..., None],
|
||
# A * dt,
|
||
# B[..., None, :],
|
||
# C[..., None, :],
|
||
# self.args.chunk_size
|
||
# )
|
||
|
||
# # Output processing
|
||
# y = y + x * self.D[None, None, :, None]
|
||
# y = y.reshape((-1, y.shape[1], self.args.hidden_size))
|
||
# y = self.norm(y, z)
|
||
# y = self.out_proj(y)
|
||
|
||
# return y
|
||
|
||
# def forward_inference(self, u: mx.array, cache=None) -> mx.array:
|
||
# """
|
||
# u: (B, 1, D)
|
||
# cache: (h_cache, conv_cache)
|
||
# """
|
||
# """Single token processing during inference."""
|
||
# assert u.shape[1] == 1, "Inference mode expects single token"
|
||
|
||
# batch_size = u.shape[0]
|
||
# # Use provided cache or create new one
|
||
# self.cache = cache if cache is not None else Mamba2Cache.get_cache(self.args, batch_size, None)
|
||
|
||
# # Project input
|
||
# zxbcdt = self.in_proj(u.squeeze(1)) # (B, 2D)
|
||
# d_mlp = (zxbcdt.shape[-1] - 2 * self.args.hidden_size - 2 * self.args.n_groups * self.args.state_size - self.args.num_heads) // 2
|
||
|
||
# # (1, 768) (1, 0) (1, 0) (1, 256) (1, 0) (1, 3328)
|
||
# y0, z0, x0, z, xBC, dt = mx.split(
|
||
# zxbcdt,
|
||
# [
|
||
# d_mlp,
|
||
# d_mlp,
|
||
# self.args.hidden_size,
|
||
# self.args.hidden_size + 2 * self.args.n_groups * self.args.state_size,
|
||
# self.args.num_heads
|
||
# ],
|
||
# axis=-1
|
||
# )
|
||
|
||
# # Update convolution state and apply
|
||
# conv_state = self.cache.update_conv_state(xBC)
|
||
# xBC = mx.sum(conv_state[:, :, -1] * mx.transpose(self.conv1d.weight, [1, 0, 2]), axis=-1) # (B, D) (4, 1792)
|
||
|
||
# if self.args.use_conv_bias:
|
||
# xBC = xBC + self.conv1d.bias
|
||
|
||
# xBC = mx.sigmoid(xBC) * xBC # SiLU (4, 1792)
|
||
|
||
# # Split states and ensure proper shapes
|
||
# a0, x, B, C = mx.split(
|
||
# xBC, # (4, 1792)
|
||
# [
|
||
# self.args.hidden_size,
|
||
# self.args.n_groups * self.args.state_size,
|
||
# self.args.n_groups * self.args.state_size
|
||
# ],
|
||
# axis=-1
|
||
# )
|
||
|
||
# # SSM step with explicit shapes
|
||
# A = -mx.exp(self.A_log) # (num_heads) (24,)
|
||
# print(A.shape) # (24,)
|
||
# print(dt.shape) # (1, 3328)
|
||
# dA = mx.exp(dt * A[None, :]) # Shape: (batch_size, num_heads) <------- her eis the error
|
||
|
||
# # Reshape x considering intermediate size
|
||
# # x shape should be (batch_size * num_heads, head_dim)
|
||
# x = mx.reshape(x, (batch_size, self.args.num_heads, -1))
|
||
# assert x.shape[-1] == self.args.head_dim, f"Head dimension mismatch: {x.shape[-1]} vs {self.args.head_dim}"
|
||
|
||
# B = mx.reshape(B, (batch_size, -1)) # Should be (batch_size, state_size)
|
||
# C = mx.reshape(C, (batch_size, -1)) # Should be (batch_size, state_size)
|
||
|
||
# # Compute dBx with explicit shapes
|
||
# dBx = mx.einsum('bh,bs,bhd->bhds', dt, B, x)
|
||
|
||
# ssm_state = self.cache.update_ssm_state(dA, dBx)
|
||
|
||
# y = mx.einsum('bhds,bs->bhd', ssm_state, C)
|
||
# y = y + x * self.D[None, :, None]
|
||
# y = mx.reshape(y, (batch_size, self.args.hidden_size))
|
||
|
||
# # Output processing
|
||
# y = self.norm(y, z)
|
||
|
||
# if d_mlp > 0:
|
||
# y = mx.cat([nn.silu(z0) * x0, y], axis=-1)
|
||
|
||
# y = self.out_proj(y)
|
||
|
||
# return mx.expand_dims(y, 1)
|
||
|
||
assert u.shape[1] == 1, "Inference mode expects single token"
|
||
|
||
batch_size = u.shape[0]
|
||
# Use provided cache or create new one
|
||
self.cache = cache if cache is not None else Mamba2Cache.get_cache(self.args, batch_size, None)
|
||
|
||
# Project input
|
||
zxbcdt = self.in_proj(u.squeeze(1)) # (B, projection_size)
|
||
|
||
# Calculate splits based on model dimensions
|
||
d_mlp = self.args.intermediate_size
|
||
d_state = self.args.state_size * self.args.n_groups
|
||
|
||
# Split the projection into its components
|
||
splits = [
|
||
d_mlp, # y0
|
||
d_mlp, # z0
|
||
self.args.hidden_size, # x0
|
||
self.args.hidden_size, # z
|
||
d_state * 2, # xBC (includes both B and C)
|
||
self.args.num_heads # dt
|
||
]
|
||
|
||
y0, z0, x0, z, xBC, dt = mx.split(zxbcdt, splits[:-1], axis=-1)
|
||
|
||
# Update convolution state and apply
|
||
conv_state = self.cache.update_conv_state(xBC)
|
||
xBC = mx.sum(conv_state[:, :, -1] * mx.transpose(self.conv1d.weight, [1, 0, 2]), axis=-1)
|
||
|
||
if self.args.use_conv_bias:
|
||
xBC = xBC + self.conv1d.bias
|
||
|
||
xBC = mx.sigmoid(xBC) * xBC # SiLU
|
||
|
||
# Split states and reshape
|
||
x, BC = mx.split(xBC, [self.args.intermediate_size], axis=-1)
|
||
B, C = mx.split(BC, [d_state], axis=-1)
|
||
|
||
# Reshape for SSM computation
|
||
x = mx.reshape(x, (batch_size, self.args.num_heads, -1)) # (B, H, head_dim)
|
||
B = mx.reshape(B, (batch_size, self.args.num_heads, -1)) # (B, H, state_per_head)
|
||
C = mx.reshape(C, (batch_size, self.args.num_heads, -1)) # (B, H, state_per_head)
|
||
|
||
# Process dt to match expected shape
|
||
dt = mx.reshape(dt, (batch_size, self.args.num_heads)) # (B, H)
|
||
dt = mx.clip(
|
||
nn.softplus(dt + self.dt_bias),
|
||
self.args.time_step_min,
|
||
self.args.time_step_max
|
||
)
|
||
|
||
# SSM step
|
||
A = -mx.exp(self.A_log) # (H,)
|
||
dA = mx.exp(dt * A[None, :]) # (B, H)
|
||
|
||
# Compute dBx
|
||
dBx = mx.einsum('bh,bhs,bhd->bhds', dt, B, x)
|
||
|
||
# Update SSM state and compute output
|
||
ssm_state = self.cache.update_ssm_state(dA, dBx)
|
||
y = mx.einsum('bhds,bhs->bhd', ssm_state, C)
|
||
y = y + x * self.D[None, :, None]
|
||
|
||
# Reshape output
|
||
y = mx.reshape(y, (batch_size, self.args.hidden_size))
|
||
|
||
# Final output processing
|
||
y = self.norm(y, z)
|
||
|
||
if d_mlp > 0:
|
||
y = mx.concat([nn.silu(z0) * x0, y], axis=-1)
|
||
|
||
y = self.out_proj(y)
|
||
|
||
return mx.expand_dims(y, 1) # (B, 1, D)
|
||
|
||
|
||
class ResidualBlock(nn.Module):
|
||
def __init__(self, args: ModelArgs):
|
||
super().__init__()
|
||
self.mixer = Mamba2Block(args)
|
||
self.norm = nn.RMSNorm(args.hidden_size)
|
||
|
||
def __call__(self, x: mx.array, cache=None) -> mx.array:
|
||
# x : (B, L, D)
|
||
return self.mixer(self.norm(x), cache) + x # (B, L, D)
|
||
|
||
|
||
class Mamba2Model(nn.Module):
|
||
def __init__(self, args: ModelArgs):
|
||
super().__init__()
|
||
self.args = args
|
||
self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
|
||
self.layers = [ResidualBlock(args) for _ in range(args.num_hidden_layers)]
|
||
self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
||
|
||
def __call__(self, x: mx.array, cache=None) -> mx.array:
|
||
# x : (B, L)
|
||
x = self.embeddings(x)
|
||
# x : (B, L, D)
|
||
if cache is None:
|
||
cache = [None] * len(self.layers)
|
||
|
||
for layer, layer_cache in zip(self.layers, cache):
|
||
x = layer(x, layer_cache)
|
||
return self.norm_f(x)
|
||
|
||
|
||
class Model(nn.Module):
|
||
def __init__(self, args: ModelArgs):
|
||
super().__init__()
|
||
self.args = args
|
||
self.backbone = Mamba2Model(args)
|
||
|
||
if not args.tie_word_embeddings:
|
||
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
||
|
||
def __call__(self, inputs: mx.array, cache=None) -> mx.array:
|
||
# inputs : (B, L)
|
||
B, T = inputs.shape
|
||
|
||
x = self.backbone(inputs, cache)
|
||
|
||
if self.args.tie_word_embeddings:
|
||
logits = self.backbone.embeddings.as_linear(x)
|
||
else:
|
||
logits = self.lm_head(x)
|
||
|
||
return logits
|
||
|
||
def make_cache(self, batch_size=1):
|
||
return [Mamba2Cache(
|
||
batch_size=batch_size,
|
||
hidden_size=self.args.hidden_size,
|
||
state_size=self.args.state_size,
|
||
conv_kernel=self.args.conv_kernel,
|
||
num_heads=self.args.num_heads,
|
||
head_dim=self.args.head_dim
|
||
) for _ in range(len(self.backbone.layers))]
|
||
|
||
def sanitize(self, weights):
|
||
for k, v in weights.items():
|
||
if "conv1d.weight" in k and v.ndim == 3:
|
||
weights[k] = v.moveaxis(2, 1)
|
||
return weights |