mlx-examples/llms/mlx_lm/models/mamba2-prch.py
Goekdeniz-Guelmez 58b448dc0b updates
2024-10-30 21:23:13 +01:00

490 lines
21 KiB
Python

# coding=utf-8
# Copyright 2024 state-spaces/mamba2 org and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch MAMBA2 model."""
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
logger = logging.get_logger(__name__)
def pad_tensor_by_size(input_tensor: torch.Tensor, pad_size: int):
"""
Padding x tensor with `pad_size` on the seq_len dim (dim=1)
Assumes that we only have tensors of either size 4 or 3
"""
pad_shape = (0, 0, 0, 0, 0, pad_size, 0, 0) if len(input_tensor.shape) == 4 else (0, 0, 0, pad_size, 0, 0)
return torch.nn.functional.pad(input_tensor, pad_shape, mode="constant", value=0)
def reshape_into_chunks(input_tensor, pad_size, chunk_size):
"""
Padding input_tensor with `pad_size` on the seq_len dim (dim=1) and
simultaneously splitting it into chunk sequences.
Assumes that we only have tensors of either size 4 or 3
"""
# [bsz, seq_len, ...] -> [bsz, seq_len multiple of chunk_size, ...]
input_tensor = pad_tensor_by_size(input_tensor, pad_size)
if len(input_tensor.shape) == 3:
# [bsz, seq_len multiple of chunk_size, num_heads] -> [bsz, -1, chunk_size, num_heads]
return input_tensor.reshape(input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2])
else:
# [bsz, seq_len multiple of chunk_size, num_heads, head_dim or state_size] -> [bsz, -1, chunk_size, num_heads, head_dim or state_size]
return input_tensor.reshape(
input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2], input_tensor.shape[3]
)
def segment_sum(input_tensor):
"""
More stable segment sum calculation. Uses cumulative sums and masking instead of direct subtractions.
"""
chunk_size = input_tensor.size(-1)
# 1. expand input tensor to have an additional dimension and repeat along that dimension
# [..., chunk_size] -> [..., chunk_size, chunk_size]
input_tensor = input_tensor[..., None].expand(*input_tensor.size(), chunk_size)
# 2. create a lower triangular mask with the diagonal set to 0 to 0 out elements above diag
mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=-1)
input_tensor = input_tensor.masked_fill(~mask, 0)
# 3. compute actual cumsum
tensor_segsum = torch.cumsum(input_tensor, dim=-2)
# 4. apply mask to keep only the lower triangular part of the cumulative sum result (incl diagonal this time)
mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=0)
tensor_segsum = tensor_segsum.masked_fill(~mask, -torch.inf)
return tensor_segsum
class Mamba2Cache:
"""
Arguments:
config: ModelArgs
batch_size: int
dtype: torch.dtype
device: torch.device
Attributes:
seqlen_offset: int
dtype: torch.dtype
conv_states: Dict[int, torch.Tensor] # layer_idx -> [batch_size, intermediate_size, conv_kernel_size]
ssm_states: Dict[int, torch.Tensor] # layer_idx -> [batch_size, intermediate_size, ssm_state_size]
"""
def __init__(
self, config: ModelArgs, batch_size: int, dtype: torch.dtype = torch.float16, device: Optional[str] = None
):
self.seqlen_offset = 0
self.dtype = dtype
self.conv_kernel_size = config.conv_kernel
self.intermediate_size = int(config.expand * config.hidden_size)
self.conv_states = {
i: torch.zeros(
batch_size,
self.intermediate_size + 2 * config.n_groups * config.state_size,
self.conv_kernel_size,
device=device,
dtype=dtype,
)
for i in range(config.num_hidden_layers)
}
self.ssm_states = {
i: torch.zeros(
batch_size, config.num_heads, config.head_dim, config.state_size, device=device, dtype=dtype
)
for i in range(config.num_hidden_layers)
}
def update_conv_state(
self, layer_idx: int, new_conv_state: torch.Tensor, cache_position: torch.LongTensor
) -> torch.Tensor:
conv_state = self.conv_states[layer_idx]
cache_position = cache_position.clamp(0, self.conv_kernel_size - 1)
conv_state = conv_state.roll(shifts=-1, dims=-1)
conv_state[:, :, cache_position] = new_conv_state.to(conv_state.device)
self.conv_states[layer_idx].zero_()
self.conv_states[layer_idx] += conv_state
return self.conv_states[layer_idx]
def reset(self):
self.conv_states.zero_()
self.ssm_states.zero_()
class MambaRMSNormGated(torch.nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states, gate=None):
input_dtype = hidden_states.dtype
hidden_states = hidden_states
if gate is not None:
hidden_states = hidden_states * nn.functional.silu(gate)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states
class Mamba2Mixer(nn.Module):
def __init__(self, config: ModelArgs):
super().__init__()
self.num_heads = config.num_heads
self.hidden_size = config.hidden_size
self.ssm_state_size = config.state_size
self.conv_kernel_size = config.conv_kernel
self.intermediate_size = int(config.expand * self.hidden_size)
self.time_step_rank = int(config.time_step_rank)
self.use_conv_bias = config.use_conv_bias
self.act = nn.silu
self.layer_norm_epsilon = config.layer_norm_epsilon
self.rms_norm = config.rms_norm
self.n_groups = config.n_groups
self.head_dim = config.head_dim
self.chunk_size = config.chunk_size
self.time_step_limit = config.time_step_limit
self.time_step_min = config.time_step_min
self.time_step_max = config.time_step_max
self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.ssm_state_size
self.conv1d = nn.Conv1d(
in_channels=self.conv_dim,
out_channels=self.conv_dim,
bias=config.use_conv_bias,
kernel_size=config.conv_kernel,
groups=self.conv_dim,
padding=config.conv_kernel - 1,
)
# projection of the input hidden states
projection_size = self.intermediate_size + self.conv_dim + self.num_heads
self.in_proj = nn.Linear(
self.hidden_size,
projection_size,
bias=config.use_bias,
)
self.dt_bias = torch.ones(self.num_heads)
A = torch.arange(1, self.num_heads + 1)
self.A_log = torch.log(A)
self.D = torch.ones(self.num_heads)
self.norm = MambaRMSNormGated(self.intermediate_size, eps=self.layer_norm_epsilon)
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
def forward(self, input_states, cache_params: Optional[Mamba2Cache]=None, cache_position:Optional[torch.LongTensor]=None):
batch_size, seq_len, _ = input_states.shape
dtype = input_states.dtype
# Gated MLP's linear projection
projected_states = self.in_proj(input_states.squeeze(1))
d_mlp = (
projected_states.shape[-1] - 2 * self.intermediate_size - 2 * self.n_groups * self.ssm_state_size- self.num_heads) // 2
_, _, gate, hidden_states, dt = projected_states.split(
[d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
)
# Convolution sequence transformation
if cache_params is not None:
ssm_state = cache_params.ssm_states[self.layer_idx].clone()
ssm_state = ssm_state.to(hidden_states.device)
if cache_params.seqlen_offset > 0:
conv_state = cache_params.conv_states[self.layer_idx] # [batch, intermediate_size, conv_kernel_size]
conv_state = torch.roll(conv_state, shifts=-1, dims=-1)
# handle batched generation - states are copied through
conv_state[:, :, -1] = hidden_states[:, 0, :] if hidden_states.ndim == 3 else hidden_states
cache_params.conv_states[self.layer_idx].copy_(conv_state)
hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1)
if self.use_conv_bias:
hidden_states += self.conv1d.bias
hidden_states = self.act(hidden_states)[:, None, ...] # [batch, 1, intermediate_size] : decoding
else:
hidden_states = hidden_states.transpose(1,2)
conv_state = nn.functional.pad(
hidden_states,
(self.conv_kernel_size - hidden_states.shape[-1], 0)
)
cache_params.conv_states[self.layer_idx].copy_(conv_state)
hidden_states = self.act(self.conv1d(hidden_states).transpose(1,2))[:, :seq_len, :] # [batch, intermediate_size, seq_len]
else:
ssm_state = torch.zeros(
(batch_size, self.num_heads, self.head_dim, self.ssm_state_size),
device=hidden_states.device
)
hidden_states = self.act(self.conv1d(hidden_states.transpose(1, 2))[..., :seq_len].transpose(1, 2))
hidden_states, B, C = torch.split(hidden_states, [self.intermediate_size, self.n_groups * self.ssm_state_size, self.n_groups * self.ssm_state_size], dim=-1)
A = -torch.exp(self.A_log.float()) # [num_heads]
if cache_params is not None and cache_params.seqlen_offset > 0:
# Note: there is no need to pad parameter matrices here, as there is just one new token
# for batched generation
dt = dt[:, None, ...] if dt.ndim == 2 else dt[:, 0, :][:, None, ...]
dt = dt.transpose(1, 2).expand(batch_size, dt.shape[-1], self.head_dim)
# [num_heads] -> [num_heads, head_dim]
dt_bias = self.dt_bias[..., None].expand(self.dt_bias.shape[0], self.head_dim)
dt = torch.nn.functional.softplus(dt + dt_bias.to(dt.dtype))
dt = torch.clamp(dt, self.time_step_min) #, self.time_step_max)
A = A[..., None, None].expand(self.num_heads, self.head_dim, self.ssm_state_size).to(dtype=torch.float32)
# [bsz, num_heads, head_dim, state_size]
dA = torch.exp(dt[..., None] * A)
# Discretize B
# [bsz, n_groups * state_size] -> [bsz, n_groups, 1, state_size] ->
# -> [bsz, n_groups, group to head repetition factor, state_size] -> [bsz, num_heads, state_size]
B = B.reshape(batch_size, self.n_groups, -1)[..., None, :]
B = B.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, B.shape[-1]).contiguous()
B = B.reshape(batch_size, -1, B.shape[-1])
# [bsz, num_heads, head_dim, state_size]
dB = dt[..., None] * B[..., None, :]
# Discretize x into dB
# [bsz, intermediate_size] -> [bsz, num_heads, head_dim]
hidden_states = hidden_states.reshape(batch_size, -1, self.head_dim)
dBx = dB * hidden_states[..., None]
# State calculation
cache_params.ssm_states[self.layer_idx].copy_(
cache_params.ssm_states[self.layer_idx] * dA + dBx
)
# Subsequent output
# [bsz, n_groups * state_size] -> [bsz, num_heads, state_size]
C = C.reshape(batch_size, self.n_groups, -1)[..., None, :]
C = C.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, C.shape[-1]).contiguous()
C = C.reshape(batch_size, -1, C.shape[-1])
# [bsz, num_heads, head_dim]
ssm_states = cache_params.ssm_states[self.layer_idx].to(C.dtype) # Shape: [b, h, d, n]
# Reshape ssm_states to merge the first two dimensions
ssm_states_reshaped = ssm_states.view(batch_size * self.num_heads, self.head_dim, self.ssm_state_size) # Shape: [b*h, d, n]
C_reshaped = C.view(batch_size * self.num_heads, self.ssm_state_size, 1) # Shape: [b*h, n, 1]
y = torch.bmm(ssm_states_reshaped, C_reshaped)
y = y.view(batch_size, self.num_heads, self.head_dim)
# D skip connection
# [num_heads] -> [num_heads, head_dim]
D = self.D[..., None].expand(self.D.shape[0], self.head_dim)
y = (y + hidden_states * D).to(y.dtype)
# [bsz, num_heads, head_dim] -> [bsz, 1, intermediate_size]
y = y.reshape(batch_size, -1)[:, None, ...]
else:
# begin ssd naive implementation without einsums
dt = nn.functional.softplus(dt + self.dt_bias)
dt = torch.clamp(dt, self.time_step_min)
hidden_states = hidden_states.reshape(batch_size, seq_len, -1, self.head_dim).float()
B = B.reshape(batch_size, seq_len, -1, self.ssm_state_size).float()
C = C.reshape(batch_size, seq_len, -1, self.ssm_state_size).float()
B = B.repeat(1, 1, self.num_heads // self.n_groups, 1)
C = C.repeat(1, 1, self.num_heads // self.n_groups, 1)
pad_size = self.chunk_size - (seq_len % self.chunk_size)
D_residual = self.D[..., None] * pad_tensor_by_size(hidden_states, pad_size)
# Discretize x and A
hidden_states = hidden_states * dt[..., None]
A = A.to(hidden_states.dtype) * dt
# Rearrange into blocks/chunks
hidden_states, A, B, C = [reshape_into_chunks(t, pad_size, self.chunk_size) for t in (hidden_states, A, B, C)]
# [bsz, -1, chunk_size, num_heads] -> [bsz, num_heads, -1, chunk_size]
A = A.permute(0, 3, 1, 2)
A_cumsum = torch.cumsum(A, dim=-1)
# 1. Compute the output for each intra-chunk (diagonal blocks)
# This is the analog of a causal mask
L = torch.exp(segment_sum(A))
# First, contraction of C and B to get G (attention-weights like)
G_intermediate = C[:, :, :, None, :, :] * B[:, :, None, :, : ,:] # shape: (b, c, l, s, h, n)
G = G_intermediate.sum(dim=-1) # shape: (b, c, l, s, h)
# Step 2: Compute M, equivalent to applying attention mask to weights
M_intermediate = G[..., None] * L.permute(0, 2, 3, 4, 1)[..., None]
M = M_intermediate.sum(dim=-1)
# Step 3: Compute Y_diag (apply to values)
Y_diag = (M[..., None] * hidden_states[:, :, None]).sum(3)
# (right term of low-rank factorization of off-diagonal blocks; B terms)
decay_states = torch.exp((A_cumsum[:, :, :, -1:] - A_cumsum))
B_decay_contraction = B * decay_states.permute(0, 2, 3, 1)[..., None]
# permute back B * decay states
states = (B_decay_contraction.permute(0, 1, 3, 2, 4)[..., None] * hidden_states.permute(0, 1, 3, 2, 4)[..., None, :]).sum(dim=3).permute(0, 1, 2, 4, 3)
if cache_params is not None and cache_params.seqlen_offset > 0:
previous_states = cache_params.ssm_states[self.layer_idx][:, None, ...]
else:
previous_states = torch.zeros_like(states[:, :1])
states = torch.cat([previous_states, states], dim=1)
decay_chunk = torch.exp(segment_sum(nn.functional.pad(A_cumsum[:, :, :, -1], (1, 0))))
states_permuted = states.permute(0, 2, 1, 3, 4)
result = (decay_chunk[..., None, None] * states_permuted[:, :, None, ...]).sum(dim=2)
new_states = result.permute(0, 2, 1, 3, 4)
states, ssm_state = new_states[:, :-1], new_states[:, -1]
# Compute state -> output conversion per chunk
# (left term of low-rank factorization of off-diagonal blocks; C terms)
state_decay_out = torch.exp(A_cumsum)
# compute Yoff
C_times_states = (C[..., None, :] * states[:, :, None, ...])
state_decay_out_permuted = state_decay_out.permute(0, 2, 3, 1)
Y_off = (C_times_states.sum(-1) * state_decay_out_permuted[..., None])
# Add output of intra-chunk and inter-chunk terms (diagonal and off-diagonal blocks)
y = Y_diag + Y_off
# [bsz, -1, self.chunk_size, num_heads, head_dim] -> [bsz, (padded) seq_len, num_heads, head_dim]
y = y.reshape(batch_size, -1, self.num_heads, self.head_dim)
y = y + D_residual
# Cutting off padded chunks
if pad_size > 0:
y = y[:, :seq_len, :, :]
y = y.reshape(batch_size, seq_len, -1)
if ssm_state is not None and cache_params is not None:
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
scan_output = self.norm(y, gate)
# end ssd naive
# 4. Final linear projection
contextualized_states = self.out_proj(scan_output) # [batch, seq_len, hidden_size]
return contextualized_states
class Mamba2RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Mamba2RMSNorm is equivalent to T5LayerNorm and LlamaRMSNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states
class Mamba2Block(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.norm = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.mixer = Mamba2Mixer(config)
def forward(
self,
hidden_states,
cache_params: Optional[Mamba2Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
):
x = self.mixer(
self.norm(hidden_states), cache_params=cache_params, cache_position=cache_position
)
return x + hidden_states
class Mamba2Model(nn.Module):
def __init__(self, config):
super().__init__(config)
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = nn.ModuleList([Mamba2Block(config, layer_idx=idx) for idx in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
self.norm_f = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
cache_params: Optional[Mamba2Cache] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
):
inputs_embeds = self.embeddings(input_ids)
if use_cache:
if cache_params is None:
cache_params = Mamba2Cache(
self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype
)
cache_position = torch.arange(0, self.config.conv_kernel, device=inputs_embeds.device)
else:
cache_params = None
hidden_states = inputs_embeds
for mixer_block in self.layers:
hidden_states = mixer_block(
hidden_states,
cache_params=cache_params,
cache_position=cache_position,
)
if use_cache:
cache_params.seqlen_offset += inputs_embeds.shape[1]
return self.norm_f(hidden_states), cache_params if use_cache else None
class Mamba2ForCausalLM(nn.Module):
def __init__(self, config):
super().__init__(config)
self.backbone = Mamba2Model(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
cache_params: Optional[Mamba2Cache] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.Tensor] = None,
):
mamba2_outputs = self.backbone(
input_ids,
cache_params=cache_params,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = mamba2_outputs[0]
logits = self.lm_head(hidden_states)
return logits, mamba2_outputs.cache_params, mamba2_outputs.hidden_states