mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-07-17 16:01:11 +08:00
358 lines
10 KiB
Python
358 lines
10 KiB
Python
# Copyright © 2024 Apple Inc.
|
|
|
|
from dataclasses import dataclass
|
|
from typing import List
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
from mlx.nn.layers.upsample import upsample_nearest
|
|
|
|
|
|
@dataclass
|
|
class AutoEncoderParams:
|
|
resolution: int
|
|
in_channels: int
|
|
ch: int
|
|
out_ch: int
|
|
ch_mult: List[int]
|
|
num_res_blocks: int
|
|
z_channels: int
|
|
scale_factor: float
|
|
shift_factor: float
|
|
|
|
|
|
class AttnBlock(nn.Module):
|
|
def __init__(self, in_channels: int):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
|
|
self.norm = nn.GroupNorm(
|
|
num_groups=32,
|
|
dims=in_channels,
|
|
eps=1e-6,
|
|
affine=True,
|
|
pytorch_compatible=True,
|
|
)
|
|
self.q = nn.Linear(in_channels, in_channels)
|
|
self.k = nn.Linear(in_channels, in_channels)
|
|
self.v = nn.Linear(in_channels, in_channels)
|
|
self.proj_out = nn.Linear(in_channels, in_channels)
|
|
|
|
def __call__(self, x: mx.array) -> mx.array:
|
|
B, H, W, C = x.shape
|
|
|
|
y = x.reshape(B, 1, -1, C)
|
|
y = self.norm(y)
|
|
q = self.q(y)
|
|
k = self.k(y)
|
|
v = self.v(y)
|
|
y = mx.fast.scaled_dot_product_attention(q, k, v, scale=C ** (-0.5))
|
|
y = self.proj_out(y)
|
|
|
|
return x + y.reshape(B, H, W, C)
|
|
|
|
|
|
class ResnetBlock(nn.Module):
|
|
def __init__(self, in_channels: int, out_channels: int):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
out_channels = in_channels if out_channels is None else out_channels
|
|
self.out_channels = out_channels
|
|
|
|
self.norm1 = nn.GroupNorm(
|
|
num_groups=32,
|
|
dims=in_channels,
|
|
eps=1e-6,
|
|
affine=True,
|
|
pytorch_compatible=True,
|
|
)
|
|
self.conv1 = nn.Conv2d(
|
|
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
|
)
|
|
self.norm2 = nn.GroupNorm(
|
|
num_groups=32,
|
|
dims=out_channels,
|
|
eps=1e-6,
|
|
affine=True,
|
|
pytorch_compatible=True,
|
|
)
|
|
self.conv2 = nn.Conv2d(
|
|
out_channels, out_channels, kernel_size=3, stride=1, padding=1
|
|
)
|
|
if self.in_channels != self.out_channels:
|
|
self.nin_shortcut = nn.Linear(in_channels, out_channels)
|
|
|
|
def __call__(self, x):
|
|
h = x
|
|
h = self.norm1(h)
|
|
h = nn.silu(h)
|
|
h = self.conv1(h)
|
|
|
|
h = self.norm2(h)
|
|
h = nn.silu(h)
|
|
h = self.conv2(h)
|
|
|
|
if self.in_channels != self.out_channels:
|
|
x = self.nin_shortcut(x)
|
|
|
|
return x + h
|
|
|
|
|
|
class Downsample(nn.Module):
|
|
def __init__(self, in_channels: int):
|
|
super().__init__()
|
|
self.conv = nn.Conv2d(
|
|
in_channels, in_channels, kernel_size=3, stride=2, padding=0
|
|
)
|
|
|
|
def __call__(self, x: mx.array):
|
|
x = mx.pad(x, [(0, 0), (0, 1), (0, 1), (0, 0)])
|
|
x = self.conv(x)
|
|
return x
|
|
|
|
|
|
class Upsample(nn.Module):
|
|
def __init__(self, in_channels: int):
|
|
super().__init__()
|
|
self.conv = nn.Conv2d(
|
|
in_channels, in_channels, kernel_size=3, stride=1, padding=1
|
|
)
|
|
|
|
def __call__(self, x: mx.array):
|
|
x = upsample_nearest(x, (2, 2))
|
|
x = self.conv(x)
|
|
return x
|
|
|
|
|
|
class Encoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
resolution: int,
|
|
in_channels: int,
|
|
ch: int,
|
|
ch_mult: list[int],
|
|
num_res_blocks: int,
|
|
z_channels: int,
|
|
):
|
|
super().__init__()
|
|
self.ch = ch
|
|
self.num_resolutions = len(ch_mult)
|
|
self.num_res_blocks = num_res_blocks
|
|
self.resolution = resolution
|
|
self.in_channels = in_channels
|
|
# downsampling
|
|
self.conv_in = nn.Conv2d(
|
|
in_channels, self.ch, kernel_size=3, stride=1, padding=1
|
|
)
|
|
|
|
curr_res = resolution
|
|
in_ch_mult = (1,) + tuple(ch_mult)
|
|
self.in_ch_mult = in_ch_mult
|
|
self.down = []
|
|
block_in = self.ch
|
|
for i_level in range(self.num_resolutions):
|
|
block = []
|
|
attn = [] # TODO: Remove the attn, nobody appends anything to it
|
|
block_in = ch * in_ch_mult[i_level]
|
|
block_out = ch * ch_mult[i_level]
|
|
for _ in range(self.num_res_blocks):
|
|
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
|
|
block_in = block_out
|
|
down = {}
|
|
down["block"] = block
|
|
down["attn"] = attn
|
|
if i_level != self.num_resolutions - 1:
|
|
down["downsample"] = Downsample(block_in)
|
|
curr_res = curr_res // 2
|
|
self.down.append(down)
|
|
|
|
# middle
|
|
self.mid = {}
|
|
self.mid["block_1"] = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
|
self.mid["attn_1"] = AttnBlock(block_in)
|
|
self.mid["block_2"] = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
|
|
|
# end
|
|
self.norm_out = nn.GroupNorm(
|
|
num_groups=32, dims=block_in, eps=1e-6, affine=True, pytorch_compatible=True
|
|
)
|
|
self.conv_out = nn.Conv2d(
|
|
block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1
|
|
)
|
|
|
|
def __call__(self, x: mx.array):
|
|
hs = [self.conv_in(x)]
|
|
for i_level in range(self.num_resolutions):
|
|
for i_block in range(self.num_res_blocks):
|
|
h = self.down[i_level]["block"][i_block](hs[-1])
|
|
|
|
# TODO: Remove the attn
|
|
if len(self.down[i_level]["attn"]) > 0:
|
|
h = self.down[i_level]["attn"][i_block](h)
|
|
|
|
hs.append(h)
|
|
|
|
if i_level != self.num_resolutions - 1:
|
|
hs.append(self.down[i_level]["downsample"](hs[-1]))
|
|
|
|
# middle
|
|
h = hs[-1]
|
|
h = self.mid["block_1"](h)
|
|
h = self.mid["attn_1"](h)
|
|
h = self.mid["block_2"](h)
|
|
|
|
# end
|
|
h = self.norm_out(h)
|
|
h = nn.silu(h)
|
|
h = self.conv_out(h)
|
|
|
|
return h
|
|
|
|
|
|
class Decoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
ch: int,
|
|
out_ch: int,
|
|
ch_mult: list[int],
|
|
num_res_blocks: int,
|
|
in_channels: int,
|
|
resolution: int,
|
|
z_channels: int,
|
|
):
|
|
super().__init__()
|
|
self.ch = ch
|
|
self.num_resolutions = len(ch_mult)
|
|
self.num_res_blocks = num_res_blocks
|
|
self.resolution = resolution
|
|
self.in_channels = in_channels
|
|
self.ffactor = 2 ** (self.num_resolutions - 1)
|
|
|
|
# compute in_ch_mult, block_in and curr_res at lowest res
|
|
block_in = ch * ch_mult[self.num_resolutions - 1]
|
|
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
|
self.z_shape = (1, z_channels, curr_res, curr_res)
|
|
|
|
# z to block_in
|
|
self.conv_in = nn.Conv2d(
|
|
z_channels, block_in, kernel_size=3, stride=1, padding=1
|
|
)
|
|
|
|
# middle
|
|
self.mid = {}
|
|
self.mid["block_1"] = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
|
self.mid["attn_1"] = AttnBlock(block_in)
|
|
self.mid["block_2"] = ResnetBlock(in_channels=block_in, out_channels=block_in)
|
|
|
|
# upsampling
|
|
self.up = []
|
|
for i_level in reversed(range(self.num_resolutions)):
|
|
block = []
|
|
attn = [] # TODO: Remove the attn, nobody appends anything to it
|
|
|
|
block_out = ch * ch_mult[i_level]
|
|
for _ in range(self.num_res_blocks + 1):
|
|
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
|
|
block_in = block_out
|
|
up = {}
|
|
up["block"] = block
|
|
up["attn"] = attn
|
|
if i_level != 0:
|
|
up["upsample"] = Upsample(block_in)
|
|
curr_res = curr_res * 2
|
|
self.up.insert(0, up) # prepend to get consistent order
|
|
|
|
# end
|
|
self.norm_out = nn.GroupNorm(
|
|
num_groups=32, dims=block_in, eps=1e-6, affine=True, pytorch_compatible=True
|
|
)
|
|
self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
|
|
|
|
def __call__(self, z: mx.array):
|
|
# z to block_in
|
|
h = self.conv_in(z)
|
|
|
|
# middle
|
|
h = self.mid["block_1"](h)
|
|
h = self.mid["attn_1"](h)
|
|
h = self.mid["block_2"](h)
|
|
|
|
# upsampling
|
|
for i_level in reversed(range(self.num_resolutions)):
|
|
for i_block in range(self.num_res_blocks + 1):
|
|
h = self.up[i_level]["block"][i_block](h)
|
|
|
|
# TODO: Remove the attn
|
|
if len(self.up[i_level]["attn"]) > 0:
|
|
h = self.up[i_level]["attn"][i_block](h)
|
|
|
|
if i_level != 0:
|
|
h = self.up[i_level]["upsample"](h)
|
|
|
|
# end
|
|
h = self.norm_out(h)
|
|
h = nn.silu(h)
|
|
h = self.conv_out(h)
|
|
|
|
return h
|
|
|
|
|
|
class DiagonalGaussian(nn.Module):
|
|
def __call__(self, z: mx.array):
|
|
mean, logvar = mx.split(z, 2, axis=-1)
|
|
if self.training:
|
|
std = mx.exp(0.5 * logvar)
|
|
eps = mx.random.normal(shape=z.shape, dtype=z.dtype)
|
|
return mean + std * eps
|
|
else:
|
|
return mean
|
|
|
|
|
|
class AutoEncoder(nn.Module):
|
|
def __init__(self, params: AutoEncoderParams):
|
|
super().__init__()
|
|
self.encoder = Encoder(
|
|
resolution=params.resolution,
|
|
in_channels=params.in_channels,
|
|
ch=params.ch,
|
|
ch_mult=params.ch_mult,
|
|
num_res_blocks=params.num_res_blocks,
|
|
z_channels=params.z_channels,
|
|
)
|
|
self.decoder = Decoder(
|
|
resolution=params.resolution,
|
|
in_channels=params.in_channels,
|
|
ch=params.ch,
|
|
out_ch=params.out_ch,
|
|
ch_mult=params.ch_mult,
|
|
num_res_blocks=params.num_res_blocks,
|
|
z_channels=params.z_channels,
|
|
)
|
|
self.reg = DiagonalGaussian()
|
|
|
|
self.scale_factor = params.scale_factor
|
|
self.shift_factor = params.shift_factor
|
|
|
|
def sanitize(self, weights):
|
|
new_weights = {}
|
|
for k, w in weights.items():
|
|
if w.ndim == 4:
|
|
w = w.transpose(0, 2, 3, 1)
|
|
w = w.reshape(-1).reshape(w.shape)
|
|
if w.shape[1:3] == (1, 1):
|
|
w = w.squeeze((1, 2))
|
|
new_weights[k] = w
|
|
return new_weights
|
|
|
|
def encode(self, x: mx.array):
|
|
z = self.reg(self.encoder(x))
|
|
z = self.scale_factor * (z - self.shift_factor)
|
|
return z
|
|
|
|
def decode(self, z: mx.array):
|
|
z = z / self.scale_factor + self.shift_factor
|
|
return self.decoder(z)
|
|
|
|
def __call__(self, x: mx.array):
|
|
return self.decode(self.encode(x))
|