mlx-examples/flux/flux/autoencoder.py
2024-10-11 21:17:41 -07:00

358 lines
10 KiB
Python

# Copyright © 2024 Apple Inc.
from dataclasses import dataclass
from typing import List
import mlx.core as mx
import mlx.nn as nn
from mlx.nn.layers.upsample import upsample_nearest
@dataclass
class AutoEncoderParams:
resolution: int
in_channels: int
ch: int
out_ch: int
ch_mult: List[int]
num_res_blocks: int
z_channels: int
scale_factor: float
shift_factor: float
class AttnBlock(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
self.in_channels = in_channels
self.norm = nn.GroupNorm(
num_groups=32,
dims=in_channels,
eps=1e-6,
affine=True,
pytorch_compatible=True,
)
self.q = nn.Linear(in_channels, in_channels)
self.k = nn.Linear(in_channels, in_channels)
self.v = nn.Linear(in_channels, in_channels)
self.proj_out = nn.Linear(in_channels, in_channels)
def __call__(self, x: mx.array) -> mx.array:
B, H, W, C = x.shape
y = x.reshape(B, 1, -1, C)
y = self.norm(y)
q = self.q(y)
k = self.k(y)
v = self.v(y)
y = mx.fast.scaled_dot_product_attention(q, k, v, scale=C ** (-0.5))
y = self.proj_out(y)
return x + y.reshape(B, H, W, C)
class ResnetBlock(nn.Module):
def __init__(self, in_channels: int, out_channels: int):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.norm1 = nn.GroupNorm(
num_groups=32,
dims=in_channels,
eps=1e-6,
affine=True,
pytorch_compatible=True,
)
self.conv1 = nn.Conv2d(
in_channels, out_channels, kernel_size=3, stride=1, padding=1
)
self.norm2 = nn.GroupNorm(
num_groups=32,
dims=out_channels,
eps=1e-6,
affine=True,
pytorch_compatible=True,
)
self.conv2 = nn.Conv2d(
out_channels, out_channels, kernel_size=3, stride=1, padding=1
)
if self.in_channels != self.out_channels:
self.nin_shortcut = nn.Linear(in_channels, out_channels)
def __call__(self, x):
h = x
h = self.norm1(h)
h = nn.silu(h)
h = self.conv1(h)
h = self.norm2(h)
h = nn.silu(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
x = self.nin_shortcut(x)
return x + h
class Downsample(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
self.conv = nn.Conv2d(
in_channels, in_channels, kernel_size=3, stride=2, padding=0
)
def __call__(self, x: mx.array):
x = mx.pad(x, [(0, 0), (0, 1), (0, 1), (0, 0)])
x = self.conv(x)
return x
class Upsample(nn.Module):
def __init__(self, in_channels: int):
super().__init__()
self.conv = nn.Conv2d(
in_channels, in_channels, kernel_size=3, stride=1, padding=1
)
def __call__(self, x: mx.array):
x = upsample_nearest(x, (2, 2))
x = self.conv(x)
return x
class Encoder(nn.Module):
def __init__(
self,
resolution: int,
in_channels: int,
ch: int,
ch_mult: list[int],
num_res_blocks: int,
z_channels: int,
):
super().__init__()
self.ch = ch
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
# downsampling
self.conv_in = nn.Conv2d(
in_channels, self.ch, kernel_size=3, stride=1, padding=1
)
curr_res = resolution
in_ch_mult = (1,) + tuple(ch_mult)
self.in_ch_mult = in_ch_mult
self.down = []
block_in = self.ch
for i_level in range(self.num_resolutions):
block = []
attn = [] # TODO: Remove the attn, nobody appends anything to it
block_in = ch * in_ch_mult[i_level]
block_out = ch * ch_mult[i_level]
for _ in range(self.num_res_blocks):
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
block_in = block_out
down = {}
down["block"] = block
down["attn"] = attn
if i_level != self.num_resolutions - 1:
down["downsample"] = Downsample(block_in)
curr_res = curr_res // 2
self.down.append(down)
# middle
self.mid = {}
self.mid["block_1"] = ResnetBlock(in_channels=block_in, out_channels=block_in)
self.mid["attn_1"] = AttnBlock(block_in)
self.mid["block_2"] = ResnetBlock(in_channels=block_in, out_channels=block_in)
# end
self.norm_out = nn.GroupNorm(
num_groups=32, dims=block_in, eps=1e-6, affine=True, pytorch_compatible=True
)
self.conv_out = nn.Conv2d(
block_in, 2 * z_channels, kernel_size=3, stride=1, padding=1
)
def __call__(self, x: mx.array):
hs = [self.conv_in(x)]
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level]["block"][i_block](hs[-1])
# TODO: Remove the attn
if len(self.down[i_level]["attn"]) > 0:
h = self.down[i_level]["attn"][i_block](h)
hs.append(h)
if i_level != self.num_resolutions - 1:
hs.append(self.down[i_level]["downsample"](hs[-1]))
# middle
h = hs[-1]
h = self.mid["block_1"](h)
h = self.mid["attn_1"](h)
h = self.mid["block_2"](h)
# end
h = self.norm_out(h)
h = nn.silu(h)
h = self.conv_out(h)
return h
class Decoder(nn.Module):
def __init__(
self,
ch: int,
out_ch: int,
ch_mult: list[int],
num_res_blocks: int,
in_channels: int,
resolution: int,
z_channels: int,
):
super().__init__()
self.ch = ch
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
self.ffactor = 2 ** (self.num_resolutions - 1)
# compute in_ch_mult, block_in and curr_res at lowest res
block_in = ch * ch_mult[self.num_resolutions - 1]
curr_res = resolution // 2 ** (self.num_resolutions - 1)
self.z_shape = (1, z_channels, curr_res, curr_res)
# z to block_in
self.conv_in = nn.Conv2d(
z_channels, block_in, kernel_size=3, stride=1, padding=1
)
# middle
self.mid = {}
self.mid["block_1"] = ResnetBlock(in_channels=block_in, out_channels=block_in)
self.mid["attn_1"] = AttnBlock(block_in)
self.mid["block_2"] = ResnetBlock(in_channels=block_in, out_channels=block_in)
# upsampling
self.up = []
for i_level in reversed(range(self.num_resolutions)):
block = []
attn = [] # TODO: Remove the attn, nobody appends anything to it
block_out = ch * ch_mult[i_level]
for _ in range(self.num_res_blocks + 1):
block.append(ResnetBlock(in_channels=block_in, out_channels=block_out))
block_in = block_out
up = {}
up["block"] = block
up["attn"] = attn
if i_level != 0:
up["upsample"] = Upsample(block_in)
curr_res = curr_res * 2
self.up.insert(0, up) # prepend to get consistent order
# end
self.norm_out = nn.GroupNorm(
num_groups=32, dims=block_in, eps=1e-6, affine=True, pytorch_compatible=True
)
self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
def __call__(self, z: mx.array):
# z to block_in
h = self.conv_in(z)
# middle
h = self.mid["block_1"](h)
h = self.mid["attn_1"](h)
h = self.mid["block_2"](h)
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
h = self.up[i_level]["block"][i_block](h)
# TODO: Remove the attn
if len(self.up[i_level]["attn"]) > 0:
h = self.up[i_level]["attn"][i_block](h)
if i_level != 0:
h = self.up[i_level]["upsample"](h)
# end
h = self.norm_out(h)
h = nn.silu(h)
h = self.conv_out(h)
return h
class DiagonalGaussian(nn.Module):
def __call__(self, z: mx.array):
mean, logvar = mx.split(z, 2, axis=-1)
if self.training:
std = mx.exp(0.5 * logvar)
eps = mx.random.normal(shape=z.shape, dtype=z.dtype)
return mean + std * eps
else:
return mean
class AutoEncoder(nn.Module):
def __init__(self, params: AutoEncoderParams):
super().__init__()
self.encoder = Encoder(
resolution=params.resolution,
in_channels=params.in_channels,
ch=params.ch,
ch_mult=params.ch_mult,
num_res_blocks=params.num_res_blocks,
z_channels=params.z_channels,
)
self.decoder = Decoder(
resolution=params.resolution,
in_channels=params.in_channels,
ch=params.ch,
out_ch=params.out_ch,
ch_mult=params.ch_mult,
num_res_blocks=params.num_res_blocks,
z_channels=params.z_channels,
)
self.reg = DiagonalGaussian()
self.scale_factor = params.scale_factor
self.shift_factor = params.shift_factor
def sanitize(self, weights):
new_weights = {}
for k, w in weights.items():
if w.ndim == 4:
w = w.transpose(0, 2, 3, 1)
w = w.reshape(-1).reshape(w.shape)
if w.shape[1:3] == (1, 1):
w = w.squeeze((1, 2))
new_weights[k] = w
return new_weights
def encode(self, x: mx.array):
z = self.reg(self.encoder(x))
z = self.scale_factor * (z - self.shift_factor)
return z
def decode(self, z: mx.array):
z = z / self.scale_factor + self.shift_factor
return self.decoder(z)
def __call__(self, x: mx.array):
return self.decode(self.encode(x))