mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 09:21:18 +08:00

* Add qwen model draft * Add readme and requirements for qwen example * Add model and tokenizer options * Fix convert and tokenizer * some updates / style consistency * move to llm subdir * readme nit --------- Co-authored-by: Awni Hannun <awni@apple.com>
270 lines
8.0 KiB
Python
270 lines
8.0 KiB
Python
import argparse
|
||
from dataclasses import dataclass
|
||
import json
|
||
import mlx.core as mx
|
||
import mlx.nn as nn
|
||
from mlx.utils import tree_unflatten
|
||
from transformers import AutoTokenizer
|
||
|
||
|
||
@dataclass
|
||
class ModelArgs:
|
||
hidden_size: int = 2048
|
||
num_attention_heads: int = 16
|
||
num_hidden_layers: int = 24
|
||
kv_channels: int = 128
|
||
max_position_embeddings: int = 8192
|
||
layer_norm_epsilon: float = 1e-6
|
||
intermediate_size: int = 11008
|
||
no_bias: bool = True
|
||
vocab_size: int = 151936
|
||
|
||
|
||
class RMSNorm(nn.Module):
|
||
def __init__(self, dims: int, eps: float = 1e-5):
|
||
super().__init__()
|
||
self.weight = mx.ones((dims,))
|
||
self.eps = eps
|
||
|
||
def _norm(self, x):
|
||
return x * mx.rsqrt(x.square().mean(-1, keepdims=True) + self.eps)
|
||
|
||
def __call__(self, x):
|
||
output = self._norm(x.astype(mx.float32)).astype(x.dtype)
|
||
return self.weight * output
|
||
|
||
|
||
class Attention(nn.Module):
|
||
def __init__(self, args: ModelArgs):
|
||
super().__init__()
|
||
|
||
hidden_size = args.hidden_size
|
||
self.num_attention_heads = args.num_attention_heads
|
||
|
||
hidden_size_per_attention_head = hidden_size // self.num_attention_heads
|
||
|
||
self.rotary_emb = nn.RoPE(hidden_size_per_attention_head, traditional=False)
|
||
|
||
proj_size = args.kv_channels * self.num_attention_heads
|
||
|
||
self.c_attn = nn.Linear(hidden_size, proj_size * 3, bias=True)
|
||
self.c_proj = nn.Linear(hidden_size, proj_size, bias=not args.no_bias)
|
||
|
||
self.scale = hidden_size_per_attention_head**-0.5
|
||
|
||
def __call__(self, x, mask=None, cache=None):
|
||
qkv = self.c_attn(x)
|
||
|
||
q, k, v = mx.split(qkv, 3, axis=-1)
|
||
|
||
B, L, _ = q.shape
|
||
|
||
q = q.reshape(B, L, self.num_attention_heads, -1).transpose(0, 2, 1, 3)
|
||
k = k.reshape(B, L, self.num_attention_heads, -1).transpose(0, 2, 1, 3)
|
||
v = v.reshape(B, L, self.num_attention_heads, -1).transpose(0, 2, 1, 3)
|
||
|
||
if cache is not None:
|
||
k_cache, v_cache = cache
|
||
q = self.rotary_emb(q, offset=k_cache.shape[2])
|
||
k = self.rotary_emb(k, offset=k_cache.shape[2])
|
||
k = mx.concatenate([k_cache, k], axis=2)
|
||
v = mx.concatenate([v_cache, v], axis=2)
|
||
|
||
else:
|
||
q = self.rotary_emb(q)
|
||
k = self.rotary_emb(k)
|
||
|
||
scores = (q * self.scale) @ k.transpose(0, 1, 3, 2)
|
||
|
||
if mask is not None:
|
||
scores = scores + mask
|
||
|
||
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype)
|
||
v_hat = (scores @ v).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
||
|
||
return self.c_proj(v_hat), (k, v)
|
||
|
||
|
||
class MLP(nn.Module):
|
||
def __init__(self, args: ModelArgs):
|
||
super().__init__()
|
||
|
||
self.w1 = nn.Linear(
|
||
args.hidden_size, args.intermediate_size // 2, bias=not args.no_bias
|
||
)
|
||
self.w2 = nn.Linear(
|
||
args.intermediate_size // 2, args.hidden_size, bias=not args.no_bias
|
||
)
|
||
self.c_proj = nn.Linear(
|
||
args.intermediate_size // 2, args.hidden_size, bias=not args.no_bias
|
||
)
|
||
|
||
def __call__(self, x):
|
||
a1 = self.w1(x)
|
||
a2 = self.w2(x)
|
||
return self.c_proj(a1 * nn.silu(a2))
|
||
|
||
|
||
class TransformerBlock(nn.Module):
|
||
def __init__(self, args: ModelArgs):
|
||
super().__init__()
|
||
|
||
self.ln_1 = RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
||
self.attn = Attention(args)
|
||
self.ln_2 = RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
||
self.mlp = MLP(args)
|
||
|
||
def __call__(self, x, mask=None, cache=None):
|
||
residual = x
|
||
x = self.ln_1(x)
|
||
x, cache = self.attn(x, mask=mask, cache=cache)
|
||
residual = x + residual
|
||
x = self.ln_2(residual)
|
||
x = self.mlp(x)
|
||
x = x + residual
|
||
|
||
return x, cache
|
||
|
||
|
||
class Qwen(nn.Module):
|
||
def __init__(self, args: ModelArgs):
|
||
super().__init__()
|
||
|
||
self.embed_dim = args.hidden_size
|
||
|
||
self.wte = nn.Embedding(args.vocab_size, args.hidden_size)
|
||
self.h = [TransformerBlock(args) for _ in range(args.num_hidden_layers)]
|
||
self.ln_f = RMSNorm(self.embed_dim, eps=args.layer_norm_epsilon)
|
||
|
||
self.lm_head = nn.Linear(self.embed_dim, args.vocab_size, bias=False)
|
||
|
||
def __call__(self, inputs, mask=None, cache=None):
|
||
x = self.wte(inputs)
|
||
|
||
mask = None
|
||
T = x.shape[1]
|
||
if T > 1:
|
||
mask = nn.MultiHeadAttention.create_additive_causal_mask(T)
|
||
mask = mask.astype(x.dtype)
|
||
|
||
if cache is None:
|
||
cache = [None] * len(self.h)
|
||
|
||
for e, layer in enumerate(self.h):
|
||
x, cache[e] = layer(x, mask, cache[e])
|
||
|
||
x = self.ln_f(x[:, T - 1 : T, :])
|
||
return self.lm_head(x), cache
|
||
|
||
|
||
def generate(prompt: mx.array, model: Qwen, temp: 0.0):
|
||
def sample(logits):
|
||
if temp == 0:
|
||
return mx.argmax(logits, axis=-1)
|
||
else:
|
||
return mx.random.categorical(logits * (1 / temp))
|
||
|
||
logits, cache = model(prompt)
|
||
y = sample(logits[:, -1, :])
|
||
yield y
|
||
|
||
while True:
|
||
logits, cache = model(y[:, None], cache=cache)
|
||
y = sample(logits.squeeze(1))
|
||
yield y
|
||
|
||
|
||
def load_model(
|
||
tokenizer_path: str = "Qwen/Qwen-1_8B", config_path: str = "config.json"
|
||
):
|
||
model_args = ModelArgs()
|
||
|
||
with open(config_path, "r") as f:
|
||
config = json.load(f)
|
||
model_args.vocab_size = config["vocab_size"]
|
||
model_args.hidden_size = config["hidden_size"]
|
||
model_args.num_attention_heads = config["num_attention_heads"]
|
||
model_args.num_hidden_layers = config["num_hidden_layers"]
|
||
model_args.kv_channels = config["kv_channels"]
|
||
model_args.max_position_embeddings = config["max_position_embeddings"]
|
||
model_args.layer_norm_epsilon = config["layer_norm_epsilon"]
|
||
model_args.intermediate_size = config["intermediate_size"]
|
||
model_args.no_bias = config["no_bias"]
|
||
|
||
model = Qwen(model_args)
|
||
|
||
weights = mx.load("weights.npz")
|
||
model.update(tree_unflatten(list(weights.items())))
|
||
tokenizer = AutoTokenizer.from_pretrained(
|
||
tokenizer_path, trust_remote_code=True, eos_token="<|endoftext|>"
|
||
)
|
||
return model, tokenizer
|
||
|
||
|
||
if __name__ == "__main__":
|
||
parser = argparse.ArgumentParser(description="Qwen inference script")
|
||
parser.add_argument(
|
||
"--tokenizer",
|
||
help="The tokenizer to be used, defaults to Qwen/Qwen-1_8B",
|
||
default="Qwen/Qwen-1_8B",
|
||
)
|
||
parser.add_argument(
|
||
"--prompt",
|
||
help="The message to be processed by the model",
|
||
# The example from the official huggingface repo of Qwen
|
||
default="蒙古国的首都是乌兰巴托(Ulaanbaatar)\n冰岛的首都是雷克雅未克(Reykjavik)\n埃塞俄比亚的首都是",
|
||
)
|
||
parser.add_argument(
|
||
"--max_tokens",
|
||
"-m",
|
||
type=int,
|
||
default=100,
|
||
help="Maximum number of tokens to generate",
|
||
)
|
||
parser.add_argument(
|
||
"--temp",
|
||
help="The sampling temperature.",
|
||
type=float,
|
||
default=0.0,
|
||
)
|
||
parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
|
||
args = parser.parse_args()
|
||
|
||
mx.random.seed(args.seed)
|
||
|
||
model, tokenizer = load_model(args.tokenizer)
|
||
|
||
prompt = tokenizer(
|
||
args.prompt,
|
||
return_tensors="np",
|
||
return_attention_mask=False,
|
||
)["input_ids"]
|
||
|
||
prompt = mx.array(prompt)
|
||
|
||
print(args.prompt, end="", flush=True)
|
||
|
||
tokens = []
|
||
for token, _ in zip(generate(prompt, model, args.temp), range(args.max_tokens)):
|
||
tokens.append(token)
|
||
|
||
if (len(tokens) % 10) == 0:
|
||
mx.eval(tokens)
|
||
eos_index = next(
|
||
(i for i, t in enumerate(tokens) if t.item() == tokenizer.eos_token_id),
|
||
None,
|
||
)
|
||
|
||
if eos_index is not None:
|
||
tokens = tokens[:eos_index]
|
||
|
||
s = tokenizer.decode([t.item() for t in tokens])
|
||
print(s, end="", flush=True)
|
||
tokens = []
|
||
if eos_index is not None:
|
||
break
|
||
|
||
mx.eval(tokens)
|
||
s = tokenizer.decode([t.item() for t in tokens])
|
||
print(s, flush=True)
|