mlx-examples/llms/mlx_lm/examples/generate_response.py
Alex Wozniakowski 63800c8feb
Example of response generation with optional arguments (#853)
* Generate response with optional arguments

* Reference response generation example

* Include transformers and sentencepiece

* Update example to run Mistral-7B-Instruct-v0.3

* Link to generation example

* Style changes from pre-commit
2024-07-09 06:49:59 -07:00

41 lines
1.0 KiB
Python

from mlx_lm import generate, load
# Specify the checkpoint
checkpoint = "mistralai/Mistral-7B-Instruct-v0.3"
# Load the corresponding model and tokenizer
model, tokenizer = load(path_or_hf_repo=checkpoint)
# Specify the prompt and conversation history
prompt = "Why is the sky blue?"
conversation = [{"role": "user", "content": prompt}]
# Transform the prompt into the chat template
prompt = tokenizer.apply_chat_template(
conversation=conversation, tokenize=False, add_generation_prompt=True
)
# Specify the maximum number of tokens
max_tokens = 1_000
# Specify if tokens and timing information will be printed
verbose = True
# Some optional arguments for causal language model generation
generation_args = {
"temp": 0.7,
"repetition_penalty": 1.2,
"repetition_context_size": 20,
"top_p": 0.95,
}
# Generate a response with the specified settings
response = generate(
model=model,
tokenizer=tokenizer,
prompt=prompt,
max_tokens=max_tokens,
verbose=verbose,
**generation_args,
)