mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 17:31:18 +08:00

* testing quantization * conversion + quantization working * one config processor * quantization in mistral / nits in llama * args for quantization * llama / mistral conversion in good shape * phi2 quantized * mixtral * qwen conversion
243 lines
7.3 KiB
Python
243 lines
7.3 KiB
Python
import argparse
|
|
import json
|
|
import math
|
|
from dataclasses import dataclass
|
|
from pathlib import Path
|
|
from typing import Optional
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
from mlx.utils import tree_unflatten
|
|
from transformers import AutoTokenizer
|
|
|
|
|
|
@dataclass
|
|
class ModelArgs:
|
|
max_sequence_length: int = 2048
|
|
num_vocab: int = 51200
|
|
model_dim: int = 2560
|
|
num_heads: int = 32
|
|
num_layers: int = 32
|
|
rotary_dim: int = 32
|
|
|
|
|
|
class LayerNorm(nn.LayerNorm):
|
|
def __call__(self, x: mx.array) -> mx.array:
|
|
return super().__call__(x.astype(mx.float32)).astype(x.dtype)
|
|
|
|
|
|
class RoPEAttention(nn.Module):
|
|
def __init__(self, dims: int, num_heads: int, rotary_dim: int):
|
|
super().__init__()
|
|
|
|
self.num_heads = num_heads
|
|
|
|
self.rope = nn.RoPE(rotary_dim, traditional=False)
|
|
self.Wqkv = nn.Linear(dims, 3 * dims)
|
|
self.out_proj = nn.Linear(dims, dims)
|
|
|
|
def __call__(self, x, mask=None, cache=None):
|
|
qkv = self.Wqkv(x)
|
|
queries, keys, values = mx.split(qkv, 3, axis=-1)
|
|
|
|
# Extract some shapes
|
|
num_heads = self.num_heads
|
|
B, L, D = queries.shape
|
|
|
|
# Prepare the queries, keys and values for the attention computation
|
|
queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
|
keys = keys.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
|
values = values.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
# Add RoPE to the queries and keys and combine them with the cache
|
|
if cache is not None:
|
|
key_cache, value_cache = cache
|
|
queries = self.rope(queries, offset=key_cache.shape[2])
|
|
keys = self.rope(keys, offset=key_cache.shape[2])
|
|
keys = mx.concatenate([key_cache, keys], axis=2)
|
|
values = mx.concatenate([value_cache, values], axis=2)
|
|
else:
|
|
queries = self.rope(queries)
|
|
keys = self.rope(keys)
|
|
|
|
queries = queries.astype(mx.float32)
|
|
keys = keys.astype(mx.float32)
|
|
|
|
# Finally perform the attention computation
|
|
scale = math.sqrt(1 / queries.shape[-1])
|
|
scores = (queries * scale) @ keys.transpose(0, 1, 3, 2)
|
|
if mask is not None:
|
|
scores = scores + mask
|
|
|
|
scores = mx.softmax(scores, axis=-1).astype(values.dtype)
|
|
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
|
|
return self.out_proj(values_hat), (keys, values)
|
|
|
|
|
|
class ParallelBlock(nn.Module):
|
|
def __init__(self, config: ModelArgs):
|
|
super().__init__()
|
|
dims = config.model_dim
|
|
mlp_dims = dims * 4
|
|
self.mixer = RoPEAttention(dims, config.num_heads, config.rotary_dim)
|
|
self.ln = LayerNorm(dims)
|
|
self.fc1 = nn.Linear(dims, mlp_dims)
|
|
self.fc2 = nn.Linear(mlp_dims, dims)
|
|
self.act = nn.GELU(approx="precise")
|
|
|
|
def __call__(self, x, mask, cache):
|
|
h = self.ln(x)
|
|
attn_h, cache = self.mixer(h, mask, cache)
|
|
ff_h = self.fc2(self.act(self.fc1(h)))
|
|
return attn_h + ff_h + x, cache
|
|
|
|
|
|
class TransformerDecoder(nn.Module):
|
|
def __init__(self, config: ModelArgs):
|
|
super().__init__()
|
|
self.h = [ParallelBlock(config) for i in range(config.num_layers)]
|
|
|
|
def __call__(self, x, mask, cache):
|
|
if cache is None:
|
|
cache = [None] * len(self.h)
|
|
|
|
for e, layer in enumerate(self.h):
|
|
x, cache[e] = layer(x, mask, cache[e])
|
|
return x, cache
|
|
|
|
|
|
class OutputHead(nn.Module):
|
|
def __init__(self, config: ModelArgs) -> None:
|
|
self.ln = LayerNorm(config.model_dim)
|
|
self.linear = nn.Linear(config.model_dim, config.num_vocab)
|
|
|
|
def __call__(self, inputs):
|
|
return self.linear(self.ln(inputs))
|
|
|
|
|
|
class Phi2(nn.Module):
|
|
def __init__(self, config: ModelArgs):
|
|
self.wte = nn.Embedding(config.num_vocab, config.model_dim)
|
|
self.transformer = TransformerDecoder(config)
|
|
self.lm_head = OutputHead(config)
|
|
|
|
def __call__(
|
|
self,
|
|
inputs: mx.array,
|
|
mask: mx.array = None,
|
|
cache: mx.array = None,
|
|
) -> tuple[mx.array, mx.array]:
|
|
x = self.wte(inputs)
|
|
|
|
mask = None
|
|
if x.shape[1] > 1:
|
|
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
|
|
mask = mask.astype(x.dtype)
|
|
|
|
y, cache = self.transformer(x, mask, cache)
|
|
return self.lm_head(y), cache
|
|
|
|
|
|
def generate(prompt: mx.array, model: Phi2, temp: Optional[float] = 0.0):
|
|
def sample(logits):
|
|
if temp == 0:
|
|
return mx.argmax(logits, axis=-1)
|
|
else:
|
|
return mx.random.categorical(logits * (1 / temp))
|
|
|
|
logits, cache = model(prompt)
|
|
y = sample(logits[:, -1, :])
|
|
yield y
|
|
|
|
while True:
|
|
logits, cache = model(y[:, None], cache=cache)
|
|
y = sample(logits.squeeze(1))
|
|
yield y
|
|
|
|
|
|
def load_model(model_path: str):
|
|
model = Phi2(ModelArgs())
|
|
model_path = Path(model_path)
|
|
with open(model_path / "config.json", "r") as f:
|
|
config = json.loads(f.read())
|
|
config.pop("model_type", None)
|
|
quantization = config.pop("quantization", None)
|
|
weights = mx.load(str(model_path / "weights.npz"))
|
|
weights = tree_unflatten(list(weights.items()))
|
|
if quantization is not None:
|
|
nn.QuantizedLinear.quantize_module(model, **quantization)
|
|
model.update(weights)
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-2", trust_remote_code=True)
|
|
return model, tokenizer
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Phi-2 inference script")
|
|
parser.add_argument(
|
|
"--model-path",
|
|
type=str,
|
|
default="mlx_model",
|
|
help="The path to the model weights",
|
|
)
|
|
parser.add_argument(
|
|
"--prompt",
|
|
help="The message to be processed by the model",
|
|
default="Write a detailed analogy between mathematics and a lighthouse.",
|
|
)
|
|
parser.add_argument(
|
|
"--max-tokens",
|
|
"-m",
|
|
type=int,
|
|
default=100,
|
|
help="Maximum number of tokens to generate",
|
|
)
|
|
parser.add_argument(
|
|
"--temp",
|
|
help="The sampling temperature.",
|
|
type=float,
|
|
default=0.0,
|
|
)
|
|
parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
|
|
args = parser.parse_args()
|
|
|
|
mx.random.seed(args.seed)
|
|
|
|
model, tokenizer = load_model(args.model_path)
|
|
|
|
prompt = tokenizer(
|
|
args.prompt,
|
|
return_tensors="np",
|
|
return_attention_mask=False,
|
|
)["input_ids"]
|
|
|
|
prompt = mx.array(prompt)
|
|
|
|
print("[INFO] Generating with Phi-2...", flush=True)
|
|
print(args.prompt, end="", flush=True)
|
|
|
|
tokens = []
|
|
for token, _ in zip(generate(prompt, model, args.temp), range(args.max_tokens)):
|
|
tokens.append(token)
|
|
|
|
if (len(tokens) % 10) == 0:
|
|
mx.eval(tokens)
|
|
eos_index = next(
|
|
(i for i, t in enumerate(tokens) if t.item() == tokenizer.eos_token_id),
|
|
None,
|
|
)
|
|
|
|
if eos_index is not None:
|
|
tokens = tokens[:eos_index]
|
|
|
|
s = tokenizer.decode([t.item() for t in tokens])
|
|
print(s, end="", flush=True)
|
|
tokens = []
|
|
if eos_index is not None:
|
|
break
|
|
|
|
mx.eval(tokens)
|
|
s = tokenizer.decode([t.item() for t in tokens])
|
|
print(s, flush=True)
|