mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 09:21:18 +08:00
.. | ||
weights | ||
convert.py | ||
hf_model.py | ||
model.py | ||
README.md |
BERT
An implementation of BERT (Devlin, et al., 2019) within MLX.
Downloading and Converting Weights
The convert.py
script relies on transformers
to download the weights, and exports them as a single .npz
file.
python convert.py \
--bert-model bert-base-uncased
--mlx-model weights/bert-base-uncased.npz
Run the Model
In order to run the model, and have it forward inference on a batch of examples:
python model.py \
--bert-model bert-base-uncased \
--mlx-model weights/bert-base-uncased.npz
Which will show the following outputs:
MLX BERT:
[[[-0.17057164 0.08602728 -0.12471077 ... -0.09469379 -0.00275938
0.28314582]
[ 0.15222196 -0.48997563 -0.26665813 ... -0.19935863 -0.17162783
-0.51360303]
[ 0.9460105 0.1358298 -0.2945672 ... 0.00868467 -0.90271163
-0.2785422 ]]]
They can be compared against the 🤗 implementation with:
python hf_model.py \
--bert-model bert-base-uncased
Which will show:
HF BERT:
[[[-0.17057131 0.08602707 -0.12471108 ... -0.09469365 -0.00275959
0.28314728]
[ 0.15222463 -0.48997375 -0.26665992 ... -0.19936043 -0.17162988
-0.5136028 ]
[ 0.946011 0.13582966 -0.29456618 ... 0.00868565 -0.90271175
-0.27854213]]]