Examples in the MLX framework
mlx
Go to file
Yifan 738448c2d4
QWEN: Fix unsupported ScalarType BFloat16 (#187)
Fix unsupported ScalarType BFloat16.
2023-12-25 06:10:01 -08:00
bert Add llms subdir + update README (#145) 2023-12-20 10:22:25 -08:00
cifar Add llms subdir + update README (#145) 2023-12-20 10:22:25 -08:00
gcn Add llms subdir + update README (#145) 2023-12-20 10:22:25 -08:00
llms QWEN: Fix unsupported ScalarType BFloat16 (#187) 2023-12-25 06:10:01 -08:00
lora feat: add mistral tps (#173) 2023-12-22 07:55:57 -08:00
mnist updated README (#184) 2023-12-24 06:19:53 -08:00
speechcommands updated results (#165) 2023-12-21 06:30:17 -08:00
stable_diffusion Add llms subdir + update README (#145) 2023-12-20 10:22:25 -08:00
t5 feat: add mistral tps (#173) 2023-12-22 07:55:57 -08:00
transformer_lm Add llms subdir + update README (#145) 2023-12-20 10:22:25 -08:00
whisper Add llms subdir + update README (#145) 2023-12-20 10:22:25 -08:00
.gitignore Align CLI args and some smaller fixes (#167) 2023-12-22 14:34:32 -08:00
.pre-commit-config.yaml Add llms subdir + update README (#145) 2023-12-20 10:22:25 -08:00
ACKNOWLEDGMENTS.md Added Keyword Spotting Transformer + SpeechCommands example (#123) 2023-12-19 14:17:48 -08:00
CODE_OF_CONDUCT.md contribution + code of conduct 2023-11-29 12:31:18 -08:00
CONTRIBUTING.md Update CONTRIBUTING.md 2023-12-09 08:02:34 +09:00
LICENSE consistent copyright 2023-11-30 11:11:04 -08:00
README.md Add llms subdir + update README (#145) 2023-12-20 10:22:25 -08:00

MLX Examples

This repo contains a variety of standalone examples using the MLX framework.

The MNIST example is a good starting point to learn how to use MLX.

Some more useful examples are listed below.

Text Models

Image Models

Audio Models

Other Models

  • Semi-supervised learning on graph-structured data with GCN.

Hugging Face

Note: You can now directly download a few converted checkpoints from the MLX Community organization on Hugging Face. We encourage you to join the community and contribute new models.

Contributing

We are grateful for all of our contributors. If you contribute to MLX Examples and wish to be acknowledged, please add your name to to the list in your pull request.

Citing MLX Examples

The MLX software suite was initially developed with equal contribution by Awni Hannun, Jagrit Digani, Angelos Katharopoulos, and Ronan Collobert. If you find MLX Examples useful in your research and wish to cite it, please use the following BibTex entry:

@software{mlx2023,
  author = {Awni Hannun and Jagrit Digani and Angelos Katharopoulos and Ronan Collobert},
  title = {{MLX}: Efficient and flexible machine learning on Apple silicon},
  url = {https://github.com/ml-explore},
  version = {0.0},
  year = {2023},
}