Files
mlx-examples/llms/mlx_lm/models/cache.py

258 lines
8.3 KiB
Python

# Copyright © 2023-2024 Apple Inc.
from typing import Any, Dict, List, Optional
import mlx.core as mx
import mlx.nn as nn
from mlx.utils import tree_flatten, tree_unflatten
def make_prompt_cache(model: nn.Module, max_kv_size: Optional[int] = None) -> List[Any]:
if hasattr(model, "make_cache"):
return model.make_cache()
num_layers = len(model.layers)
if max_kv_size is not None:
return [
RotatingKVCache(max_size=max_kv_size, keep=4) for _ in range(num_layers)
]
else:
return [KVCache() for _ in range(num_layers)]
def save_prompt_cache(
file_name: str, cache: List[Any], metadata: Optional[Dict[str, str]] = None
):
"""
Save a pre-computed prompt cache to a file.
"""
cache_data, cache_info = zip(*(c.state for c in cache))
cache_data = dict(tree_flatten(cache_data))
cache_classes = [type(c).__name__ for c in cache]
cache_metadata = [cache_classes, cache_info]
if metadata:
cache_metadata.append(metadata)
cache_metadata = dict(tree_flatten(cache_metadata))
mx.save_safetensors(file_name, cache_data, cache_metadata)
def load_prompt_cache(file_name, return_metadata=False):
"""
Load a prompt cache from a file.
Args:
file_name (str): The ``.safetensors`` file name.
return_metadata (bool): Whether or not to return metadata. Default:
``False``.
Returns:
List[Any] or Tuple[List[Any], Dict[str, str]]: The prompt cache and
the metadata if requested.
"""
arrays, cache_metadata = mx.load(file_name, return_metadata=True)
arrays = tree_unflatten(list(arrays.items()))
cache_metadata = tree_unflatten(list(cache_metadata.items()))
classes, info = cache_metadata[:2]
cache = [globals()[c]() for c in classes]
for c, *state in zip(cache, arrays, info):
c.state = state
if return_metadata:
return cache, cache_metadata[2]
return cache
class KVCache:
def __init__(self):
self.keys = None
self.values = None
self.offset = 0
self.step = 256
def update_and_fetch(self, keys, values):
prev = self.offset
if self.keys is None or (prev + keys.shape[2]) > self.keys.shape[2]:
B, n_kv_heads, _, k_head_dim = keys.shape
v_head_dim = values.shape[3]
n_steps = (self.step + keys.shape[2] - 1) // self.step
k_shape = (B, n_kv_heads, n_steps * self.step, k_head_dim)
v_shape = (B, n_kv_heads, n_steps * self.step, v_head_dim)
new_k = mx.zeros(k_shape, keys.dtype)
new_v = mx.zeros(v_shape, values.dtype)
if self.keys is not None:
if prev % self.step != 0:
self.keys = self.keys[..., :prev, :]
self.values = self.values[..., :prev, :]
self.keys = mx.concatenate([self.keys, new_k], axis=2)
self.values = mx.concatenate([self.values, new_v], axis=2)
else:
self.keys, self.values = new_k, new_v
self.offset += keys.shape[2]
self.keys[..., prev : self.offset, :] = keys
self.values[..., prev : self.offset, :] = values
return self.keys[..., : self.offset, :], self.values[..., : self.offset, :]
@property
def state(self):
if self.offset == self.keys.shape[2]:
return (self.keys, self.values), ""
else:
return (
self.keys[..., : self.offset, :],
self.values[..., : self.offset, :],
), ""
@state.setter
def state(self, v):
self.keys, self.values = v[0]
self.offset = self.keys.shape[2]
class RotatingKVCache:
def __init__(self, max_size=None, keep=0, step=256):
self.keep = keep
self.keys = None
self.values = None
self.offset = 0
self.max_size = max_size
self.step = step
self._idx = 0
def _trim(self, trim_size, v, append=None):
to_cat = []
if trim_size > 0:
to_cat = [v[..., : self.keep, :], v[..., trim_size + self.keep :, :]]
else:
to_cat = [v]
if append is not None:
to_cat.append(append)
return mx.concatenate(to_cat, axis=2)
def _temporal_order(self, v):
"""
Rearrange the cache into temporal order, slicing off the end if unused.
"""
if self._idx == v.shape[2]:
return v
elif self._idx < self.offset:
return mx.concatenate(
[
v[..., : self.keep, :],
v[..., self._idx :, :],
v[..., self.keep : self._idx, :],
],
axis=2,
)
else:
return v[..., : self._idx, :]
def _update_concat(self, keys, values):
if self.keys is None:
self.keys = keys
self.values = values
else:
# Put the keys/values in temporal order to
# preserve context
self.keys = self._temporal_order(self.keys)
self.values = self._temporal_order(self.values)
# The largest size is self.max_size + S - 1 to ensure
# every token gets at least self.max_size context
trim_size = self._idx - self.max_size + 1
self.keys = self._trim(trim_size, self.keys, keys)
self.values = self._trim(trim_size, self.values, values)
self.offset += keys.shape[2]
self._idx = self.keys.shape[2]
return self.keys, self.values
def _update_in_place(self, keys, values):
# May not have hit the max size yet, so potentially
# keep growing the cache
B, n_kv_heads, S, k_head_dim = keys.shape
prev = self.offset
if self.keys is None or (
prev >= self.keys.shape[2] and self.keys.shape[2] < self.max_size
):
v_head_dim = values.shape[3]
new_size = min(self.step, self.max_size - prev)
k_shape = (B, n_kv_heads, new_size, k_head_dim)
v_shape = (B, n_kv_heads, new_size, v_head_dim)
new_k = mx.zeros(k_shape, keys.dtype)
new_v = mx.zeros(v_shape, values.dtype)
if self.keys is not None:
self.keys = mx.concatenate([self.keys, new_k], axis=2)
self.values = mx.concatenate([self.values, new_v], axis=2)
else:
self.keys, self.values = new_k, new_v
self._idx = prev
# Trim if needed
trim_size = self.keys.shape[2] - self.max_size
if trim_size > 0:
self.keys = self._trim(trim_size, self.keys)
self.values = self._trim(trim_size, self.values)
self._idx = self.max_size
# Rotate
if self._idx == self.max_size:
self._idx = self.keep
# Assign
self.keys[..., self._idx : self._idx + S, :] = keys
self.values[..., self._idx : self._idx + S, :] = values
self.offset += S
self._idx += S
# If the buffer is not full, slice off the end
if self.offset < self.max_size:
return self.keys[..., : self.offset, :], self.values[..., : self.offset, :]
return self.keys, self.values
def update_and_fetch(self, keys, values):
if keys.shape[2] == 1:
return self._update_in_place(keys, values)
return self._update_concat(keys, values)
@property
def state(self):
if self.offset < self.keys.shape[2]:
kv_state = (self.keys[..., : self.offset], self.values[..., : self.offset])
else:
kv_state = (self.keys, self.values)
extra_state = tuple(
map(str, (self.keep, self.max_size, self.step, self.offset, self._idx))
)
return kv_state, extra_state
@state.setter
def state(self, v):
self.keys, self.values = v[0]
self.keep, self.max_size, self.step, self.offset, self._idx = map(
int,
v[1],
)
class MambaCache:
def __init__(self):
self.cache = [None, None]
def __setitem__(self, idx, value):
self.cache[idx] = value
def __getitem__(self, idx):
return self.cache[idx]
@property
def state(self):
return self.cache
@property
def state(self):
return self.cache, ""
@state.setter
def state(self, v):
self.cache = v[0]