mlx-examples/lora/lora.py
Todsaporn Banjerdkit 7ae445f6c7
feat: add mistral tps (#173)
* feat: add mistral tps

* eval params before timing + format

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2023-12-22 07:55:57 -08:00

410 lines
12 KiB
Python

# Copyright © 2023 Apple Inc.
import argparse
import json
import math
import time
from pathlib import Path
from typing import List, Optional, Tuple
import mlx.core as mx
import mlx.nn as nn
import mlx.optimizers as optim
import numpy as np
from mlx.utils import tree_flatten, tree_map, tree_unflatten
from models import LoRALinear, Model, ModelArgs
from sentencepiece import SentencePieceProcessor
def build_parser():
parser = argparse.ArgumentParser(
description="LoRA finetuning with Llama or Mistral"
)
parser.add_argument(
"--model",
required=True,
help="A path to the model files containing the tokenizer, weights, config.",
)
# Generation args
parser.add_argument(
"--num-tokens", "-n", type=int, default=100, help="How many tokens to generate"
)
parser.add_argument(
"--write-every", type=int, default=1, help="After how many tokens to detokenize"
)
parser.add_argument(
"--temp", type=float, default=0.8, help="The sampling temperature"
)
parser.add_argument(
"--prompt",
"-p",
type=str,
help="The prompt for generation",
default=None,
)
# Training args
parser.add_argument(
"--train",
action="store_true",
help="Do training",
)
parser.add_argument(
"--data",
type=str,
default="data/",
help="Directory with {train, valid, test}.jsonl files",
)
parser.add_argument(
"--lora-layers",
type=int,
default=16,
help="Number of layers to fine-tune",
)
parser.add_argument("--batch-size", type=int, default=4, help="Minibatch size.")
parser.add_argument(
"--iters", type=int, default=1000, help="Iterations to train for."
)
parser.add_argument(
"--val-batches",
type=int,
default=25,
help="Number of validation batches, -1 uses the entire validation set.",
)
parser.add_argument(
"--learning-rate", type=float, default=1e-5, help="Adam learning rate."
)
parser.add_argument(
"--steps-per-report",
type=int,
default=10,
help="Number of training steps between loss reporting.",
)
parser.add_argument(
"--steps-per-eval",
type=int,
default=200,
help="Number of training steps between validations.",
)
parser.add_argument(
"--resume-adapter-file",
type=str,
default=None,
help="Load path to resume training with the given adapter weights.",
)
parser.add_argument(
"--adapter-file",
type=str,
default="adapters.npz",
help="Save/load path for the trained adapter weights.",
)
parser.add_argument(
"--test",
action="store_true",
help="Evaluate on the test set after training",
)
parser.add_argument(
"--test-batches",
type=int,
default=500,
help="Number of test set batches, -1 uses the entire test set.",
)
parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
return parser
class Tokenizer:
def __init__(self, model_path: str):
assert Path(model_path).exists(), model_path
self._model = SentencePieceProcessor(model_file=model_path)
self._sep = ""
assert self._model.vocab_size() == self._model.get_piece_size()
def encode(self, s: str, eos: bool = False) -> List[int]:
toks = [self._model.bos_id(), *self._model.encode(s)]
if eos:
toks.append(self.eos_id)
return toks
@property
def eos_id(self) -> int:
return self._model.eos_id()
def decode(self, t: List[int]) -> str:
out = self._model.decode(t)
if t and self._model.id_to_piece(t[0])[0] == self._sep:
return " " + out
return out
@property
def vocab_size(self) -> int:
return self._model.vocab_size()
class Dataset:
"""
Light-weight wrapper to hold lines from a jsonl file
"""
def __init__(self, path: Path, key: str = "text"):
if not path.exists():
self._data = None
else:
with open(path, "r") as fid:
self._data = [json.loads(l) for l in fid]
self._key = key
def __getitem__(self, idx: int):
return self._data[idx][self._key]
def __len__(self):
return len(self._data)
def load(args):
names = ("train", "valid", "test")
train, valid, test = (Dataset(Path(args.data) / f"{n}.jsonl") for n in names)
if args.train and len(train) == 0:
raise ValueError(
"Training set not found or empty. Must provide training set for fine-tuning."
)
if args.train and len(valid) == 0:
raise ValueError(
"Validation set not found or empty. Must provide validation set for fine-tuning."
)
if args.test and len(test) == 0:
raise ValueError(
"Test set not found or empty. Must provide test set for evaluation."
)
return train, valid, test
def loss(model, inputs, targets, lengths):
# Run model on inputs
logits, _ = model(inputs)
logits = logits.astype(mx.float32)
# Mask padding tokens
length_mask = mx.arange(inputs.shape[1])[None, :] < lengths[:, None]
# Calculate the loss
ce = nn.losses.cross_entropy(logits, targets) * length_mask
ntoks = length_mask.sum()
ce = ce.sum() / ntoks
return ce, ntoks
def iterate_batches(dset, tokenizer, batch_size, train=False):
# Shuffle indices
while True:
indices = np.arange(len(dset))
if train:
indices = np.random.permutation(indices)
# Collect batches from dataset
for i in range(0, len(indices) - batch_size + 1, batch_size):
# Encode batch
batch = [
tokenizer.encode(dset[indices[i + j]], eos=True)
for j in range(batch_size)
]
lengths = [len(x) for x in batch]
# Check if any sequence is longer than 2048 tokens
if max(lengths) > 2048:
print(
"[WARNING] Some sequences are longer than 2048 tokens. "
"Consider pre-splitting your data to save memory."
)
# Pad to the max length
batch_arr = np.zeros((batch_size, max(lengths)), np.int32)
for j in range(batch_size):
batch_arr[j, : lengths[j]] = batch[j]
batch = mx.array(batch_arr)
yield batch[:, :-1], batch[:, 1:], mx.array(lengths)
if not train:
break
def evaluate(model, dataset, loss, tokenizer, batch_size, num_batches):
all_losses = []
ntokens = 0
for it, batch in zip(
range(num_batches),
iterate_batches(dataset, tokenizer, batch_size),
):
losses, toks = loss(model, *batch)
all_losses.append((losses * toks).item())
ntokens += toks.item()
return np.sum(all_losses) / ntokens
def train(model, train_set, val_set, optimizer, loss, tokenizer, args):
# Create value and grad function for loss
loss_value_and_grad = nn.value_and_grad(model, loss)
losses = []
n_tokens = 0
# Main training loop
start = time.perf_counter()
for it, batch in zip(
range(args.iters),
iterate_batches(train_set, tokenizer, args.batch_size, train=True),
):
# Forward and backward pass
(lvalue, toks), grad = loss_value_and_grad(model, *batch)
# Model update
optimizer.update(model, grad)
mx.eval(model.parameters(), optimizer.state, lvalue)
# Record loss
losses.append(lvalue.item())
n_tokens += toks.item()
# Report training loss if needed
if (it + 1) % args.steps_per_report == 0:
train_loss = np.mean(losses)
stop = time.perf_counter()
print(
f"Iter {it + 1}: Train loss {train_loss:.3f}, "
f"It/sec {args.steps_per_report / (stop - start):.3f}, "
f"Tokens/sec {float(n_tokens) / (stop - start):.3f}"
)
losses = []
n_tokens = 0
start = time.perf_counter()
# Report validation loss if needed
if it == 0 or (it + 1) % args.steps_per_eval == 0:
stop = time.perf_counter()
val_loss = evaluate(
model, val_set, loss, tokenizer, args.batch_size, args.val_batches
)
print(
f"Iter {it + 1}: "
f"Val loss {val_loss:.3f}, "
f"Val took {(time.perf_counter() - stop):.3f}s"
)
start = time.perf_counter()
def generate(model, prompt, tokenizer, args):
print(args.prompt, end="", flush=True)
prompt = mx.array(tokenizer.encode(args.prompt))
def generate_step():
temp = args.temp
def sample(logits):
if temp == 0:
return mx.argmax(logits, axis=-1)
else:
return mx.random.categorical(logits * (1 / temp))
logits, cache = model(prompt[None])
y = sample(logits[:, -1, :])
yield y
while True:
logits, cache = model(y[:, None], cache)
y = sample(logits.squeeze(1))
yield y
tokens = []
for token, _ in zip(generate_step(), range(args.num_tokens)):
tokens.append(token)
if (len(tokens) % 10) == 0:
mx.eval(tokens)
s = tokenizer.decode([t.item() for t in tokens])
print(s, end="", flush=True)
tokens = []
mx.eval(tokens)
s = tokenizer.decode([t.item() for t in tokens])
print(s, flush=True)
def load_model(folder: str, dtype=mx.float16):
model_path = Path(folder)
tokenizer = Tokenizer(str(model_path / "tokenizer.model"))
with open(model_path / "params.json", "r") as f:
config = json.loads(f.read())
if config.get("vocab_size", -1) < 0:
config["vocab_size"] = tokenizer.vocab_size
model_args = ModelArgs(**config)
weights = mx.load(str(model_path / "weights.npz"))
weights = tree_unflatten(list(weights.items()))
weights = tree_map(lambda p: p.astype(dtype), weights)
model = Model(model_args)
model.update(weights)
return model, tokenizer
if __name__ == "__main__":
parser = build_parser()
args = parser.parse_args()
np.random.seed(args.seed)
print("Loading pretrained model")
model, tokenizer = load_model(args.model)
# Freeze all layers other than LORA linears
model.freeze()
for l in model.layers[-args.lora_layers :]:
l.attention.wq = LoRALinear.from_linear(l.attention.wq)
l.attention.wv = LoRALinear.from_linear(l.attention.wv)
p = sum(v.size for _, v in tree_flatten(model.parameters())) / 10**6
print(f"Total parameters {p:.3f}M")
p = sum(v.size for _, v in tree_flatten(model.trainable_parameters())) / 10**6
print(f"Trainable parameters {p:.3f}M")
print("Loading datasets")
train_set, valid_set, test_set = load(args)
# Resume training the given adapters.
if args.resume_adapter_file is not None:
print(f"Loading pretrained adapters from {args.resume_adapter_file}")
model.load_weights(args.resume_adapter_file)
if args.train:
print("Training")
opt = optim.Adam(learning_rate=args.learning_rate)
# Train model
train(model, train_set, valid_set, opt, loss, tokenizer, args)
# Save adapter weights
mx.savez(args.adapter_file, **dict(tree_flatten(model.trainable_parameters())))
# Load the LoRA adapter weights which we assume should exist by this point
model.load_weights(args.adapter_file)
if args.test:
print("Testing")
test_loss = evaluate(
model,
test_set,
loss,
tokenizer,
args.batch_size,
num_batches=args.test_batches,
)
test_ppl = math.exp(test_loss)
print(f"Test loss {test_loss:.3f}, Test ppl {test_ppl:.3f}.")
if args.prompt is not None:
print("Generating")
generate(model, args.prompt, tokenizer, args)