mlx-examples/lora/utils.py
Awni Hannun 7b258f33ac
Move lora example to use the same model format / conversion as hf_llm (#252)
* huffing face the lora example to allow more models

* fixes

* comments

* more readme nits

* fusion + works better for qlora

* nits'

* comments
2024-01-09 11:14:52 -08:00

91 lines
2.6 KiB
Python

# Copyright © 2023 Apple Inc.
import glob
import json
from pathlib import Path
import mlx.core as mx
import transformers
from huggingface_hub import snapshot_download
def fetch_from_hub(hf_path: str):
model_path = snapshot_download(
repo_id=hf_path,
allow_patterns=["*.json", "*.safetensors", "tokenizer.model"],
)
weight_files = glob.glob(f"{model_path}/*.safetensors")
if len(weight_files) == 0:
raise FileNotFoundError("No safetensors found in {}".format(model_path))
weights = {}
for wf in weight_files:
weights.update(mx.load(wf).items())
config = transformers.AutoConfig.from_pretrained(hf_path)
tokenizer = transformers.AutoTokenizer.from_pretrained(
hf_path,
)
return weights, config.to_dict(), tokenizer
def upload_to_hub(path: str, name: str, hf_path: str):
import os
from huggingface_hub import HfApi, ModelCard, logging
repo_id = f"mlx-community/{name}"
card = ModelCard.load(hf_path)
card.data.tags = ["mlx"] if card.data.tags is None else card.data.tags + ["mlx"]
card.text = f"""
# {name}
This model was converted to MLX format from [`{hf_path}`]().
Refer to the [original model card](https://huggingface.co/{hf_path}) for more details on the model.
## Use with mlx
```bash
pip install mlx
git clone https://github.com/ml-explore/mlx-examples.git
cd mlx-examples/llms/hf_llm
python generate.py --model {repo_id} --prompt "My name is"
```
"""
card.save(os.path.join(path, "README.md"))
logging.set_verbosity_info()
api = HfApi()
api.create_repo(repo_id=repo_id, exist_ok=True)
api.upload_folder(
folder_path=path,
repo_id=repo_id,
repo_type="model",
)
def make_shards(weights: dict, max_file_size_gibibyte: int = 15):
max_file_size_bytes = max_file_size_gibibyte << 30
shards = []
shard, shard_size = {}, 0
for k, v in weights.items():
estimated_size = v.size * v.dtype.size
if shard_size + estimated_size > max_file_size_bytes:
shards.append(shard)
shard, shard_size = {}, 0
shard[k] = v
shard_size += estimated_size
shards.append(shard)
return shards
def save_model(save_dir: str, weights, tokenizer, config):
save_dir = Path(save_dir)
save_dir.mkdir(parents=True, exist_ok=True)
shards = make_shards(weights)
for i, shard in enumerate(shards):
# TODO use HF file name scheme for simplicity
mx.save_safetensors(str(save_dir / f"weights.{i:02d}.safetensors"), shard)
tokenizer.save_pretrained(save_dir)
with open(save_dir / "config.json", "w") as fid:
json.dump(config, fid, indent=4)