mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-26 02:33:23 +08:00
276 lines
9.8 KiB
Python
276 lines
9.8 KiB
Python
# Copyright © 2024 Apple Inc.
|
|
|
|
from dataclasses import dataclass, field
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
|
|
from dpo_trainer import DPOTrainingArgs, iterate_dpo_batches, train_dpo, TrainingCallback
|
|
|
|
|
|
@dataclass
|
|
class ORPOTrainingArgs(DPOTrainingArgs):
|
|
"""
|
|
Training arguments specific to ORPO, extending DPO arguments.
|
|
"""
|
|
mu: float = field(
|
|
default=0.5,
|
|
metadata={"help": "ORPO KL divergence weight parameter"}
|
|
)
|
|
|
|
|
|
def orpo_loss(
|
|
model,
|
|
reference_teacher_model,
|
|
chosen: mx.array,
|
|
rejected: mx.array,
|
|
chosen_masks: mx.array,
|
|
rejected_masks: mx.array,
|
|
beta: float,
|
|
delta: float,
|
|
mu: float = 0.5, # ORPO hyperparameter for balancing KL divergence
|
|
loss_type: str = "sigmoid",
|
|
is_reference_free: bool = False
|
|
):
|
|
"""
|
|
Calculate ORPO loss for inputs.
|
|
ORPO extends DPO by adding a KL regularization term to prevent overfitting to preferences.
|
|
|
|
Args:
|
|
model: Policy model
|
|
reference_teacher_model: Reference model
|
|
chosen: Chosen sequence tokens
|
|
rejected: Rejected sequence tokens
|
|
chosen_masks: Masks for chosen sequences
|
|
rejected_masks: Masks for rejected sequences
|
|
beta: Temperature parameter
|
|
delta: Margin for DPOP loss type
|
|
mu: ORPO hyperparameter for balancing KL divergence (default: 0.5)
|
|
loss_type: Loss type ('sigmoid', 'hinge', 'ipo', or 'dpop')
|
|
is_reference_free: Whether to use reference-free training
|
|
Returns:
|
|
Tuple of (loss, reward, num_tokens)
|
|
"""
|
|
def make_predictions(model, x, mask):
|
|
inputs = x[:, :-1]
|
|
targets = x[:, 1:]
|
|
|
|
logits = model(inputs)
|
|
logits = logits.astype(mx.float32)
|
|
|
|
return -nn.losses.cross_entropy(logits, targets) * mask[:, :-1]
|
|
|
|
num_chosen_tokens = chosen_masks.sum(-1)
|
|
num_rejected_tokens = rejected_masks.sum(-1)
|
|
|
|
# Calculate log probabilities for policy model
|
|
policy_chosen_scores = make_predictions(model, chosen, chosen_masks)
|
|
policy_rejected_scores = make_predictions(model, rejected, rejected_masks)
|
|
|
|
# Calculate reference model scores
|
|
if not is_reference_free:
|
|
reference_chosen_scores = mx.stop_gradient(make_predictions(reference_teacher_model, chosen, chosen_masks))
|
|
reference_rejected_scores = mx.stop_gradient(make_predictions(reference_teacher_model, rejected, rejected_masks))
|
|
else:
|
|
reference_chosen_scores = mx.zeros_like(policy_chosen_scores)
|
|
reference_rejected_scores = mx.zeros_like(policy_rejected_scores)
|
|
|
|
# Compute average log probabilities if using IPO loss
|
|
if loss_type == "ipo":
|
|
policy_chosen_score = policy_chosen_scores.sum(-1) / num_chosen_tokens
|
|
policy_rejected_score = policy_rejected_scores.sum(-1) / num_rejected_tokens
|
|
reference_chosen_score = reference_chosen_scores.sum(-1) / num_chosen_tokens
|
|
reference_rejected_score = reference_rejected_scores.sum(-1) / num_rejected_tokens
|
|
else:
|
|
policy_chosen_score = policy_chosen_scores.sum(-1)
|
|
policy_rejected_score = policy_rejected_scores.sum(-1)
|
|
reference_chosen_score = reference_chosen_scores.sum(-1)
|
|
reference_rejected_score = reference_rejected_scores.sum(-1)
|
|
|
|
# Calculate preference logits
|
|
logits = (policy_chosen_score - policy_rejected_score) - (reference_chosen_score - reference_rejected_score)
|
|
|
|
# Calculate preference loss based on loss type
|
|
if loss_type == "sigmoid":
|
|
preference_loss = -nn.log_sigmoid(beta * logits)
|
|
elif loss_type == "hinge":
|
|
preference_loss = nn.relu(1 - beta * logits)
|
|
elif loss_type == "ipo":
|
|
preference_loss = (logits - 1 / (2 * beta)) ** 2
|
|
elif loss_type == "dpop":
|
|
penalty = mx.maximum(mx.zeros_like(policy_chosen_score), reference_chosen_score - policy_chosen_score)
|
|
preference_loss = -(nn.log_sigmoid(beta * logits) - delta * penalty)
|
|
else:
|
|
raise ValueError(f"Unknown loss type: {loss_type}")
|
|
|
|
# Calculate KL divergence term for ORPO
|
|
kl_div_chosen = mx.mean((policy_chosen_scores - reference_chosen_scores) ** 2)
|
|
kl_div_rejected = mx.mean((policy_rejected_scores - reference_rejected_scores) ** 2)
|
|
kl_regularization = mu * (kl_div_chosen + kl_div_rejected)
|
|
|
|
# Combine preference loss and KL regularization
|
|
loss = mx.mean(preference_loss) + kl_regularization
|
|
|
|
num_tokens = (num_chosen_tokens + num_rejected_tokens).sum()
|
|
|
|
# Calculate rewards for monitoring
|
|
chosen_reward = beta * mx.mean(policy_chosen_score - reference_chosen_score)
|
|
rejected_reward = beta * mx.mean(policy_rejected_score - reference_rejected_score)
|
|
reward = mx.stack([chosen_reward, rejected_reward])
|
|
|
|
return loss, reward, num_tokens
|
|
|
|
|
|
def evaluate_orpo(
|
|
model,
|
|
reference_model,
|
|
dataset,
|
|
tokenizer,
|
|
batch_size,
|
|
num_batches,
|
|
beta: float,
|
|
delta: float,
|
|
mu: float = 0.5,
|
|
max_seq_length=2048,
|
|
loss_type="sigmoid",
|
|
is_reference_free=False,
|
|
):
|
|
"""
|
|
Evaluate model using ORPO metrics.
|
|
|
|
Args:
|
|
model: Policy model to evaluate
|
|
reference_model: Reference model for comparison
|
|
dataset: Evaluation dataset
|
|
tokenizer: Tokenizer for processing text
|
|
batch_size: Batch size for evaluation
|
|
num_batches: Number of batches to evaluate (-1 for full dataset)
|
|
beta: Temperature parameter
|
|
delta: Margin for DPOP loss
|
|
mu: ORPO KL divergence weight
|
|
max_seq_length: Maximum sequence length
|
|
loss_type: Type of loss function
|
|
is_reference_free: Whether to use reference-free evaluation
|
|
|
|
Returns:
|
|
Tuple of (loss, rewards, kl_metrics), where:
|
|
- loss is the total ORPO loss
|
|
- rewards is [chosen_reward, rejected_reward]
|
|
- kl_metrics is [chosen_kl, rejected_kl]
|
|
"""
|
|
all_losses = 0
|
|
all_rewards = mx.zeros((2,)) # [chosen_reward, rejected_reward]
|
|
all_kl_divs = mx.zeros((2,)) # [chosen_kl, rejected_kl]
|
|
ntokens = 0
|
|
|
|
def compute_kl_divergence(policy_scores, reference_scores, masks):
|
|
"""Helper function to compute KL divergence metrics."""
|
|
# Using MSE as a proxy for KL divergence as in the loss function
|
|
valid_tokens = masks.sum()
|
|
kl_div = ((policy_scores - reference_scores) ** 2 * masks).sum() / valid_tokens
|
|
return kl_div
|
|
|
|
index_iterator = iter(range(num_batches)) if num_batches != -1 else iter(int, 1)
|
|
|
|
for _, batch in zip(
|
|
index_iterator,
|
|
iterate_dpo_batches( # Reusing DPO batch iterator
|
|
dataset=dataset,
|
|
tokenizer=tokenizer,
|
|
batch_size=batch_size,
|
|
max_seq_length=max_seq_length,
|
|
),
|
|
):
|
|
chosen, rejected, chosen_masks, rejected_masks = batch
|
|
|
|
# Get model predictions
|
|
def make_predictions(model, x, mask):
|
|
inputs = x[:, :-1]
|
|
targets = x[:, 1:]
|
|
logits = model(inputs)
|
|
logits = logits.astype(mx.float32)
|
|
return -nn.losses.cross_entropy(logits, targets) * mask[:, :-1]
|
|
|
|
# Get scores for both models
|
|
policy_chosen_scores = make_predictions(model, chosen, chosen_masks)
|
|
policy_rejected_scores = make_predictions(model, rejected, rejected_masks)
|
|
|
|
if not is_reference_free:
|
|
reference_chosen_scores = mx.stop_gradient(
|
|
make_predictions(reference_model, chosen, chosen_masks)
|
|
)
|
|
reference_rejected_scores = mx.stop_gradient(
|
|
make_predictions(reference_model, rejected, rejected_masks)
|
|
)
|
|
else:
|
|
reference_chosen_scores = mx.zeros_like(policy_chosen_scores)
|
|
reference_rejected_scores = mx.zeros_like(policy_rejected_scores)
|
|
|
|
# Compute KL divergences
|
|
chosen_kl = compute_kl_divergence(
|
|
policy_chosen_scores, reference_chosen_scores, chosen_masks[:, :-1]
|
|
)
|
|
rejected_kl = compute_kl_divergence(
|
|
policy_rejected_scores, reference_rejected_scores, rejected_masks[:, :-1]
|
|
)
|
|
all_kl_divs += mx.stack([chosen_kl, rejected_kl])
|
|
|
|
# Compute ORPO loss and rewards
|
|
loss, reward, toks = orpo_loss(
|
|
model=model,
|
|
reference_teacher_model=reference_model,
|
|
chosen=chosen,
|
|
rejected=rejected,
|
|
chosen_masks=chosen_masks,
|
|
rejected_masks=rejected_masks,
|
|
beta=beta,
|
|
delta=delta,
|
|
mu=mu,
|
|
loss_type=loss_type,
|
|
is_reference_free=is_reference_free,
|
|
)
|
|
|
|
all_losses += loss * toks
|
|
all_rewards += reward
|
|
ntokens += toks
|
|
mx.eval(all_losses, all_rewards, all_kl_divs, ntokens)
|
|
|
|
# Aggregate metrics across distributed workers if necessary
|
|
all_losses = mx.distributed.all_sum(all_losses)
|
|
all_rewards = mx.distributed.all_sum(all_rewards)
|
|
all_kl_divs = mx.distributed.all_sum(all_kl_divs)
|
|
ntokens = mx.distributed.all_sum(ntokens)
|
|
|
|
# Normalize metrics
|
|
avg_loss = (all_losses / ntokens).item()
|
|
avg_rewards = [r / mx.distributed.init().size() for r in all_rewards.tolist()]
|
|
avg_kl_divs = [kl / mx.distributed.init().size() for kl in all_kl_divs.tolist()]
|
|
|
|
return avg_loss, avg_rewards, avg_kl_divs
|
|
|
|
|
|
def train_orpo(
|
|
model,
|
|
reference_model,
|
|
tokenizer,
|
|
optimizer,
|
|
train_dataset,
|
|
val_dataset,
|
|
args: ORPOTrainingArgs = ORPOTrainingArgs(),
|
|
training_callback: TrainingCallback = None,
|
|
):
|
|
"""
|
|
Train a model using ORPO (Offline Rejection Preference Optimization).
|
|
This function adapts the DPO training loop to use ORPO loss.
|
|
"""
|
|
return train_dpo(
|
|
model=model,
|
|
reference_model=reference_model,
|
|
tokenizer=tokenizer,
|
|
optimizer=optimizer,
|
|
train_dataset=train_dataset,
|
|
val_dataset=val_dataset,
|
|
args=args,
|
|
loss_fn=orpo_loss,
|
|
training_callback=training_callback,
|
|
loss_type=args.loss_type,
|
|
) |