mlx-examples/llms/mlx_lm/tuner/trainer.py
dmdaksh 7d7e236061
- Removed unused Python imports (#683)
- bert/model.py:10: tree_unflatten
  - bert/model.py:2: dataclass
  - bert/model.py:8: numpy
  - cifar/resnet.py:6: Any
  - clip/model.py:15: tree_flatten
  - clip/model.py:9: Union
  - gcn/main.py:8: download_cora
  - gcn/main.py:9: cross_entropy
  - llms/gguf_llm/models.py:12: tree_flatten, tree_unflatten
  - llms/gguf_llm/models.py:9: numpy
  - llms/mixtral/mixtral.py:12: tree_map
  - llms/mlx_lm/models/dbrx.py:2: Dict, Union
  - llms/mlx_lm/tuner/trainer.py:5: partial
  - llms/speculative_decoding/decoder.py:1: dataclass, field
  - llms/speculative_decoding/decoder.py:2: Optional
  - llms/speculative_decoding/decoder.py:5: mlx.nn
  - llms/speculative_decoding/decoder.py:6: numpy
  - llms/speculative_decoding/main.py:2: glob
  - llms/speculative_decoding/main.py:3: json
  - llms/speculative_decoding/main.py:5: Path
  - llms/speculative_decoding/main.py:8: mlx.nn
  - llms/speculative_decoding/model.py:6: tree_unflatten
  - llms/speculative_decoding/model.py:7: AutoTokenizer
  - llms/tests/test_lora.py:13: yaml_loader
  - lora/lora.py:14: tree_unflatten
  - lora/models.py:11: numpy
  - lora/models.py:3: glob
  - speechcommands/kwt.py:1: Any
  - speechcommands/main.py:7: mlx.data
  - stable_diffusion/stable_diffusion/model_io.py:4: partial
  - whisper/benchmark.py:5: sys
  - whisper/test.py:5: subprocess
  - whisper/whisper/audio.py:6: Optional
  - whisper/whisper/decoding.py:8: mlx.nn
2024-04-16 07:50:32 -07:00

299 lines
9.2 KiB
Python

# Copyright © 2024 Apple Inc.
import time
from dataclasses import dataclass, field
from pathlib import Path
from typing import Union
import mlx.core as mx
import mlx.nn as nn
import numpy as np
from mlx.utils import tree_flatten
def grad_checkpoint(layer):
"""
Update all instances of type(layer) to use gradient checkpointing.
"""
fn = type(layer).__call__
def checkpointed_fn(model, *args, **kwargs):
def inner_fn(params, *args, **kwargs):
model.update(params)
return fn(model, *args, **kwargs)
return mx.checkpoint(inner_fn)(model.trainable_parameters(), *args, **kwargs)
type(layer).__call__ = checkpointed_fn
@dataclass
class TrainingArgs:
lora_layers: int = field(
default=16, metadata={"help": "Number of layers to fine-tune"}
)
batch_size: int = field(default=4, metadata={"help": "Minibatch size."})
iters: int = field(default=100, metadata={"help": "Iterations to train for."})
val_batches: int = field(
default=25,
metadata={
"help": "Number of validation batches, -1 uses the entire validation set."
},
)
steps_per_report: int = field(
default=10,
metadata={"help": "Number of training steps between loss reporting."},
)
steps_per_eval: int = field(
default=200, metadata={"help": "Number of training steps between validations."}
)
steps_per_save: int = field(
default=100, metadata={"help": "Save the model every number steps"}
)
max_seq_length: int = field(
default=2048, metadata={"help": "Maximum sequence length."}
)
adapter_file: str = field(
default="adapters.safetensors",
metadata={"help": "Save/load path for the trained adapter weights."},
)
grad_checkpoint: bool = field(
default=False,
metadata={"help": "Use gradient checkpointing to reduce memory use."},
)
def default_loss(model, inputs, targets, lengths):
logits, _ = model(inputs)
logits = logits.astype(mx.float32)
length_mask = mx.arange(inputs.shape[1])[None, :] < lengths[:, None]
ce = nn.losses.cross_entropy(logits, targets) * length_mask
ntoks = length_mask.sum()
ce = ce.sum() / ntoks
return ce, ntoks
def iterate_batches(dataset, tokenizer, batch_size, max_seq_length, train=False):
# Sort by length:
idx = sorted(range(len(dataset)), key=lambda idx: len(dataset[idx]))
# Make the batches:
batch_idx = [
idx[i : i + batch_size] for i in range(0, len(idx) - batch_size + 1, batch_size)
]
while True:
indices = np.random.permutation(len(batch_idx))
for i in indices:
# Encode batch
batch = [tokenizer.encode(dataset[j]) for j in batch_idx[i]]
lengths = [len(x) for x in batch]
if max(lengths) > max_seq_length:
print(
f"[WARNING] Some sequences are longer than {max_seq_length} tokens. "
f"The longest sentence {max(lengths)} will be truncated to {max_seq_length}. "
"Consider pre-splitting your data to save memory."
)
# Pad to the nearest multiple of 8 or the maximum length
pad_to = 8
max_length_in_batch = pad_to * ((max(lengths) + pad_to - 1) // pad_to)
max_length_in_batch = min(max_length_in_batch, max_seq_length)
batch_arr = np.zeros((batch_size, max_length_in_batch), np.int32)
for j in range(batch_size):
truncated_length = min(lengths[j], max_seq_length)
batch_arr[j, :truncated_length] = batch[j][:truncated_length]
lengths[j] = (
truncated_length # Update lengths to match truncated lengths
)
batch = mx.array(batch_arr)
yield batch[:, :-1], batch[:, 1:], mx.array(lengths)
if not train:
break
def evaluate(
model,
dataset,
tokenizer,
batch_size,
num_batches,
max_seq_length=2048,
loss: callable = default_loss,
iterate_batches: callable = iterate_batches,
):
all_losses = []
ntokens = 0
for it, batch in zip(
range(num_batches),
iterate_batches(
dataset=dataset,
tokenizer=tokenizer,
batch_size=batch_size,
max_seq_length=max_seq_length,
),
):
losses, toks = loss(model, *batch)
all_losses.append((losses * toks).item())
ntokens += toks.item()
return np.sum(all_losses) / ntokens
class TrainingCallback:
def on_train_loss_report(self, train_info: dict):
"""Called to report training loss at specified intervals."""
pass
def on_val_loss_report(self, val_info: dict):
"""Called to report validation loss at specified intervals or the beginning."""
pass
def train(
model,
tokenizer,
optimizer,
train_dataset,
val_dataset,
args: TrainingArgs = TrainingArgs(),
loss: callable = default_loss,
iterate_batches: callable = iterate_batches,
training_callback: TrainingCallback = None,
):
print(f"Starting training..., iters: {args.iters}")
if args.grad_checkpoint:
grad_checkpoint(model.layers[0])
state = [model.state, optimizer.state]
def step(batch):
# Forward and backward pass
(lvalue, toks), grad = loss_value_and_grad(model, *batch)
# Model update
optimizer.update(model, grad)
return lvalue, toks
loss_value_and_grad = nn.value_and_grad(model, loss)
losses = []
n_tokens = 0
trained_tokens = 0
# Main training loop
start = time.perf_counter()
for it, batch in zip(
range(1, args.iters + 1),
iterate_batches(
dataset=train_dataset,
tokenizer=tokenizer,
batch_size=args.batch_size,
max_seq_length=args.max_seq_length,
train=True,
),
):
lvalue, toks = step(batch)
mx.eval(state, lvalue, toks)
# Record loss
losses.append(lvalue.item())
n_tokens += toks.item()
# Report training loss if needed
if it % args.steps_per_report == 0 or it == args.iters:
train_loss = np.mean(losses)
stop = time.perf_counter()
learning_rate = optimizer.learning_rate.item()
it_sec = args.steps_per_report / (stop - start)
tokens_sec = float(n_tokens) / (stop - start)
trained_tokens += n_tokens
peak_mem = mx.metal.get_peak_memory() / 2**30
print(
f"Iter {it}: Train loss {train_loss:.3f}, "
f"Learning Rate {learning_rate:.3e}, "
f"It/sec {it_sec:.3f}, "
f"Tokens/sec {tokens_sec:.3f}, "
f"Trained Tokens {trained_tokens}, "
f"Peak mem {peak_mem:.3f} GB"
)
if training_callback is not None:
train_info = {
"iteration": it,
"train_loss": train_loss,
"learning_rate": learning_rate,
"iterations_per_second": it_sec,
"tokens_per_second": tokens_sec,
"trained_tokens": trained_tokens,
"peak_memory": peak_mem,
}
training_callback.on_train_loss_report(train_info)
losses = []
n_tokens = 0
start = time.perf_counter()
# Report validation loss if needed
if it == 1 or it % args.steps_per_eval == 0 or it == args.iters:
stop = time.perf_counter()
val_loss = evaluate(
model=model,
dataset=val_dataset,
loss=loss,
tokenizer=tokenizer,
batch_size=args.batch_size,
num_batches=args.val_batches,
max_seq_length=args.max_seq_length,
iterate_batches=iterate_batches,
)
val_time = time.perf_counter() - stop
print(
f"Iter {it}: " f"Val loss {val_loss:.3f}, " f"Val took {val_time:.3f}s"
)
if training_callback is not None:
val_info = {
"iteration": it,
"val_loss": val_loss,
"val_time": val_time,
}
training_callback.on_val_loss_report(val_info)
start = time.perf_counter()
# Save adapter weights
if it % args.steps_per_save == 0:
save_adapter(model, args.adapter_file)
checkpoint = (
Path(args.adapter_file).parent / f"{it:07d}_adapters.safetensors"
)
save_adapter(model, checkpoint)
print(
f"Iter {it}: Saved adapter weights to "
f"{args.adapter_file} and {checkpoint}."
)
# save final adapter weights
save_adapter(model, args.adapter_file)
print(f"Saved final adapter weights to {args.adapter_file}.")
def save_adapter(
model: nn.Module,
adapter_file: Union[str, Path],
):
flattened_tree = tree_flatten(model.trainable_parameters())
mx.save_safetensors(str(adapter_file), dict(flattened_tree))