Files
mlx-examples/llms/deepseek-coder/README.md
2023-12-28 21:40:18 -08:00

1.2 KiB

Deepseek Coder

Deepseek Coder is a family of code generating language models based on the Llama architecture.1 The models were trained from scratch on a corpus of 2T tokens, with a composition of 87% code and 13% natural language containing both English and Chinese.

Setup

Install the dependencies:

pip install -r requirements.txt

Next, download and convert the model.

python convert.py --hf-path <path_to_huggingface_model>

To generate a 4-bit quantized model, use -q. For a full list of options run:

python convert.py --help

The converter downloads the model from Hugging Face. The default model is deepseek-ai/deepseek-coder-6.7b-instruct. Check out the [Hugging Face page]((https://huggingface.co/deepseek-ai) to see a list of available models.

By default, the conversion script will save the converted weights.npz, tokenizer, and config.json in the mlx_model directory.

Run

Once you've converted the weights, you can interact with the Deepseek coder model:

python deepseek_coder.py --prompt "write a quick sort algorithm in python."

  1. For more information blog post by DeepSeek AI ↩︎