mlx-examples/llms/mlx_lm/tuner/trainer.py
madroid 7ec2021bb9
LoRA: support tools(function calling) format datasets (#995)
* LoRA: support fine-tuning tools datasets

* LoRA: Split small function

* LoRA: add tools format to lora docs

* LoRA: pre-commit fix

* Revert "LoRA: pre-commit fix"

This reverts commit b94b7e0fe7.

* Revert "LoRA: Split small function"

This reverts commit 3f6a5f19fd.

* LoRA: remove ToolsDataset

In a JSONL file, not all data is required to include the tools value.

* nit in readme

* nit in readme

* nit in readme

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-09-28 10:41:36 -07:00

309 lines
9.6 KiB
Python

# Copyright © 2024 Apple Inc.
import time
from dataclasses import dataclass, field
from pathlib import Path
from typing import Union
import mlx.core as mx
import mlx.nn as nn
import numpy as np
from mlx.utils import tree_flatten
def grad_checkpoint(layer):
"""
Update all instances of type(layer) to use gradient checkpointing.
"""
fn = type(layer).__call__
def checkpointed_fn(model, *args, **kwargs):
def inner_fn(params, *args, **kwargs):
model.update(params)
return fn(model, *args, **kwargs)
return mx.checkpoint(inner_fn)(model.trainable_parameters(), *args, **kwargs)
type(layer).__call__ = checkpointed_fn
@dataclass
class TrainingArgs:
batch_size: int = field(default=4, metadata={"help": "Minibatch size."})
iters: int = field(default=100, metadata={"help": "Iterations to train for."})
val_batches: int = field(
default=25,
metadata={
"help": "Number of validation batches, -1 uses the entire validation set."
},
)
steps_per_report: int = field(
default=10,
metadata={"help": "Number of training steps between loss reporting."},
)
steps_per_eval: int = field(
default=200, metadata={"help": "Number of training steps between validations."}
)
steps_per_save: int = field(
default=100, metadata={"help": "Save the model every number steps"}
)
max_seq_length: int = field(
default=2048, metadata={"help": "Maximum sequence length."}
)
adapter_file: str = field(
default="adapters.safetensors",
metadata={"help": "Save/load path for the trained adapter weights."},
)
grad_checkpoint: bool = field(
default=False,
metadata={"help": "Use gradient checkpointing to reduce memory use."},
)
def default_loss(model, inputs, targets, lengths):
logits = model(inputs)
logits = logits.astype(mx.float32)
length_mask = mx.arange(inputs.shape[1])[None, :] < lengths[:, None]
ce = nn.losses.cross_entropy(logits, targets) * length_mask
ntoks = length_mask.sum()
ce = ce.sum() / ntoks
return ce, ntoks
def iterate_batches(dataset, tokenizer, batch_size, max_seq_length, train=False):
# Sort by length:
idx = sorted(range(len(dataset)), key=lambda idx: len(dataset[idx]))
if len(dataset) < batch_size:
raise ValueError(
f"Dataset must have at least batch_size={batch_size}"
f" examples but only has {len(dataset)}."
)
# Make the batches:
batch_idx = [
idx[i : i + batch_size] for i in range(0, len(idx) - batch_size + 1, batch_size)
]
while True:
indices = np.random.permutation(len(batch_idx))
for i in indices:
# Encode batch
batch = [tokenizer.encode(dataset[j]) for j in batch_idx[i]]
for b in batch:
if b[-1] != tokenizer.eos_token_id:
b.append(tokenizer.eos_token_id)
lengths = [len(x) for x in batch]
if max(lengths) > max_seq_length:
print(
f"[WARNING] Some sequences are longer than {max_seq_length} tokens. "
f"The longest sentence {max(lengths)} will be truncated to {max_seq_length}. "
"Consider pre-splitting your data to save memory."
)
# Pad to the nearest multiple of 8 or the maximum length
pad_to = 8
max_length_in_batch = pad_to * ((max(lengths) + pad_to - 1) // pad_to)
max_length_in_batch = min(max_length_in_batch, max_seq_length)
batch_arr = np.zeros((batch_size, max_length_in_batch), np.int32)
for j in range(batch_size):
truncated_length = min(lengths[j], max_seq_length)
batch_arr[j, :truncated_length] = batch[j][:truncated_length]
lengths[j] = (
truncated_length # Update lengths to match truncated lengths
)
batch = mx.array(batch_arr)
yield batch[:, :-1], batch[:, 1:], mx.array(lengths)
if not train:
break
def evaluate(
model,
dataset,
tokenizer,
batch_size,
num_batches,
max_seq_length=2048,
loss: callable = default_loss,
iterate_batches: callable = iterate_batches,
):
all_losses = []
ntokens = 0
index_iterator = iter(range(num_batches)) if num_batches != -1 else iter(int, 1)
for _, batch in zip(
index_iterator,
iterate_batches(
dataset=dataset,
tokenizer=tokenizer,
batch_size=batch_size,
max_seq_length=max_seq_length,
),
):
losses, toks = loss(model, *batch)
all_losses.append((losses * toks).item())
ntokens += toks.item()
return np.sum(all_losses) / ntokens
class TrainingCallback:
def on_train_loss_report(self, train_info: dict):
"""Called to report training loss at specified intervals."""
pass
def on_val_loss_report(self, val_info: dict):
"""Called to report validation loss at specified intervals or the beginning."""
pass
def train(
model,
tokenizer,
optimizer,
train_dataset,
val_dataset,
args: TrainingArgs = TrainingArgs(),
loss: callable = default_loss,
iterate_batches: callable = iterate_batches,
training_callback: TrainingCallback = None,
):
print(f"Starting training..., iters: {args.iters}")
if args.grad_checkpoint:
grad_checkpoint(model.layers[0])
state = [model.state, optimizer.state]
def step(batch):
# Forward and backward pass
(lvalue, toks), grad = loss_value_and_grad(model, *batch)
# Model update
optimizer.update(model, grad)
return lvalue, toks
loss_value_and_grad = nn.value_and_grad(model, loss)
losses = []
n_tokens = 0
trained_tokens = 0
# Main training loop
start = time.perf_counter()
for it, batch in zip(
range(1, args.iters + 1),
iterate_batches(
dataset=train_dataset,
tokenizer=tokenizer,
batch_size=args.batch_size,
max_seq_length=args.max_seq_length,
train=True,
),
):
# Report validation loss if needed, the first validation loss
# is always measured before any training.
if it == 1 or it % args.steps_per_eval == 0 or it == args.iters:
stop = time.perf_counter()
val_loss = evaluate(
model=model,
dataset=val_dataset,
loss=loss,
tokenizer=tokenizer,
batch_size=args.batch_size,
num_batches=args.val_batches,
max_seq_length=args.max_seq_length,
iterate_batches=iterate_batches,
)
val_time = time.perf_counter() - stop
print(
f"Iter {it}: " f"Val loss {val_loss:.3f}, " f"Val took {val_time:.3f}s"
)
if training_callback is not None:
val_info = {
"iteration": it,
"val_loss": val_loss,
"val_time": val_time,
}
training_callback.on_val_loss_report(val_info)
start = time.perf_counter()
lvalue, toks = step(batch)
mx.eval(state, lvalue, toks)
# Record loss
losses.append(lvalue.item())
n_tokens += toks.item()
# Report training loss if needed
if it % args.steps_per_report == 0 or it == args.iters:
stop = time.perf_counter()
train_loss = np.mean(losses)
learning_rate = optimizer.learning_rate.item()
it_sec = args.steps_per_report / (stop - start)
tokens_sec = float(n_tokens) / (stop - start)
trained_tokens += n_tokens
peak_mem = mx.metal.get_peak_memory() / 2**30
print(
f"Iter {it}: Train loss {train_loss:.3f}, "
f"Learning Rate {learning_rate:.3e}, "
f"It/sec {it_sec:.3f}, "
f"Tokens/sec {tokens_sec:.3f}, "
f"Trained Tokens {trained_tokens}, "
f"Peak mem {peak_mem:.3f} GB"
)
if training_callback is not None:
train_info = {
"iteration": it,
"train_loss": train_loss,
"learning_rate": learning_rate,
"iterations_per_second": it_sec,
"tokens_per_second": tokens_sec,
"trained_tokens": trained_tokens,
"peak_memory": peak_mem,
}
training_callback.on_train_loss_report(train_info)
losses = []
n_tokens = 0
start = time.perf_counter()
# Save adapter weights
if it % args.steps_per_save == 0:
save_adapter(model, args.adapter_file)
checkpoint = (
Path(args.adapter_file).parent / f"{it:07d}_adapters.safetensors"
)
save_adapter(model, checkpoint)
print(
f"Iter {it}: Saved adapter weights to "
f"{args.adapter_file} and {checkpoint}."
)
# save final adapter weights
save_adapter(model, args.adapter_file)
print(f"Saved final adapter weights to {args.adapter_file}.")
def save_adapter(
model: nn.Module,
adapter_file: Union[str, Path],
):
flattened_tree = tree_flatten(model.trainable_parameters())
mx.save_safetensors(str(adapter_file), dict(flattened_tree))