mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-25 01:41:19 +08:00
172 lines
4.9 KiB
Python
172 lines
4.9 KiB
Python
# Copyright © 2023 Apple Inc.
|
|
|
|
import os
|
|
from functools import lru_cache
|
|
from subprocess import CalledProcessError, run
|
|
from typing import Union
|
|
|
|
import mlx.core as mx
|
|
import numpy as np
|
|
|
|
# hard-coded audio hyperparameters
|
|
SAMPLE_RATE = 16000
|
|
N_FFT = 400
|
|
HOP_LENGTH = 160
|
|
CHUNK_LENGTH = 30
|
|
N_SAMPLES = CHUNK_LENGTH * SAMPLE_RATE # 480000 samples in a 30-second chunk
|
|
N_FRAMES = N_SAMPLES // HOP_LENGTH # 3000 frames in a mel spectrogram input
|
|
|
|
N_SAMPLES_PER_TOKEN = HOP_LENGTH * 2 # the initial convolutions has stride 2
|
|
FRAMES_PER_SECOND = SAMPLE_RATE // HOP_LENGTH # 10ms per audio frame
|
|
TOKENS_PER_SECOND = SAMPLE_RATE // N_SAMPLES_PER_TOKEN # 20ms per audio token
|
|
|
|
|
|
def load_audio(file: str, sr: int = SAMPLE_RATE):
|
|
"""
|
|
Open an audio file and read as mono waveform, resampling as necessary
|
|
|
|
Parameters
|
|
----------
|
|
file: str
|
|
The audio file to open
|
|
|
|
sr: int
|
|
The sample rate to resample the audio if necessary
|
|
|
|
Returns
|
|
-------
|
|
A NumPy array containing the audio waveform, in float32 dtype.
|
|
"""
|
|
|
|
# This launches a subprocess to decode audio while down-mixing
|
|
# and resampling as necessary. Requires the ffmpeg CLI in PATH.
|
|
# fmt: off
|
|
cmd = [
|
|
"ffmpeg",
|
|
"-nostdin",
|
|
"-threads", "0",
|
|
"-i", file,
|
|
"-f", "s16le",
|
|
"-ac", "1",
|
|
"-acodec", "pcm_s16le",
|
|
"-ar", str(sr),
|
|
"-"
|
|
]
|
|
# fmt: on
|
|
try:
|
|
out = run(cmd, capture_output=True, check=True).stdout
|
|
except CalledProcessError as e:
|
|
raise RuntimeError(f"Failed to load audio: {e.stderr.decode()}") from e
|
|
|
|
return mx.array(np.frombuffer(out, np.int16)).flatten().astype(mx.float32) / 32768.0
|
|
|
|
|
|
def pad_or_trim(array, length: int = N_SAMPLES, *, axis: int = -1):
|
|
"""
|
|
Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
|
|
"""
|
|
if array.shape[axis] > length:
|
|
sl = [slice(None)] * array.ndim
|
|
sl[axis] = slice(0, length)
|
|
array = array[tuple(sl)]
|
|
|
|
if array.shape[axis] < length:
|
|
pad_widths = [(0, 0)] * array.ndim
|
|
pad_widths[axis] = (0, length - array.shape[axis])
|
|
array = mx.pad(array, pad_widths)
|
|
|
|
return array
|
|
|
|
|
|
@lru_cache(maxsize=None)
|
|
def mel_filters(n_mels: int) -> mx.array:
|
|
"""
|
|
load the mel filterbank matrix for projecting STFT into a Mel spectrogram.
|
|
Allows decoupling librosa dependency; saved using:
|
|
|
|
np.savez_compressed(
|
|
"mel_filters.npz",
|
|
mel_80=librosa.filters.mel(sr=16000, n_fft=400, n_mels=80),
|
|
mel_128=librosa.filters.mel(sr=16000, n_fft=400, n_mels=128),
|
|
)
|
|
"""
|
|
assert n_mels in {80, 128}, f"Unsupported n_mels: {n_mels}"
|
|
|
|
filename = os.path.join(os.path.dirname(__file__), "assets", "mel_filters.npz")
|
|
return mx.load(filename)[f"mel_{n_mels}"]
|
|
|
|
|
|
@lru_cache(maxsize=None)
|
|
def hanning(size):
|
|
return mx.array(np.hanning(size + 1)[:-1])
|
|
|
|
|
|
def stft(x, window, nperseg=256, noverlap=None, nfft=None, axis=-1, pad_mode="reflect"):
|
|
if nfft is None:
|
|
nfft = nperseg
|
|
if noverlap is None:
|
|
noverlap = nfft // 4
|
|
|
|
def _pad(x, padding, pad_mode="constant"):
|
|
if pad_mode == "constant":
|
|
return mx.pad(x, [(padding, padding)])
|
|
elif pad_mode == "reflect":
|
|
prefix = x[1 : padding + 1][::-1]
|
|
suffix = x[-(padding + 1) : -1][::-1]
|
|
return mx.concatenate([prefix, x, suffix])
|
|
else:
|
|
raise ValueError(f"Invalid pad_mode {pad_mode}")
|
|
|
|
padding = nperseg // 2
|
|
x = _pad(x, padding, pad_mode)
|
|
|
|
strides = [noverlap, 1]
|
|
t = (x.size - nperseg + noverlap) // noverlap
|
|
shape = [t, nfft]
|
|
x = mx.as_strided(x, shape=shape, strides=strides)
|
|
return mx.fft.rfft(x * window)
|
|
|
|
|
|
def log_mel_spectrogram(
|
|
audio: Union[str, np.ndarray],
|
|
n_mels: int = 80,
|
|
padding: int = 0,
|
|
):
|
|
"""
|
|
Compute the log-Mel spectrogram of
|
|
|
|
Parameters
|
|
----------
|
|
audio: Union[str, np.ndarray, mx.array], shape = (*)
|
|
The path to audio or either a NumPy or mlx array containing the audio waveform in 16 kHz
|
|
|
|
n_mels: int
|
|
The number of Mel-frequency filters, only 80 is supported
|
|
|
|
padding: int
|
|
Number of zero samples to pad to the right
|
|
|
|
Returns
|
|
-------
|
|
mx.array, shape = (80, n_frames)
|
|
An array that contains the Mel spectrogram
|
|
"""
|
|
if isinstance(audio, str):
|
|
audio = load_audio(audio)
|
|
elif not isinstance(audio, mx.array):
|
|
audio = mx.array(audio)
|
|
|
|
if padding > 0:
|
|
audio = mx.pad(audio, (0, padding))
|
|
window = hanning(N_FFT)
|
|
freqs = stft(audio, window, nperseg=N_FFT, noverlap=HOP_LENGTH)
|
|
magnitudes = freqs[:-1, :].abs().square()
|
|
|
|
filters = mel_filters(n_mels)
|
|
mel_spec = magnitudes @ filters.T
|
|
|
|
log_spec = mx.maximum(mel_spec, 1e-10).log10()
|
|
log_spec = mx.maximum(log_spec, log_spec.max() - 8.0)
|
|
log_spec = (log_spec + 4.0) / 4.0
|
|
return log_spec
|