mlx-examples/llms/mlx_lm/tuner/utils.py
Anchen 854ad8747a
feat(mlx-lm): add de-quant for fuse.py (#365)
* feat(mlx-lm): add de-quant for fuse

* chore: disable quant in to linear when de-quant enabled

* chore: add better error handling for adapter file not found
2024-01-25 18:59:32 -08:00

70 lines
2.0 KiB
Python

import os
import mlx.core as mx
import mlx.nn as nn
from mlx.utils import tree_unflatten
from .lora import LoRALinear
def apply_lora_layers(model: nn.Module, adapter_file: str) -> nn.Module:
"""
Apply LoRA layers to the model.
Args:
model (nn.Module): The neural network model.
adapter_file (str): Path to the adapter configuration file.
Returns:
nn.Module: The updated model with LoRA layers applied.
"""
if not os.path.exists(adapter_file):
raise FileNotFoundError(f"The adapter file does not exist: {adapter_file}")
adapters = list(mx.load(adapter_file).items())
linear_replacements = []
lora_layers = set(
[name.replace(".lora_a", "").replace(".lora_b", "") for name, _ in adapters]
)
for name, module in model.named_modules():
if name in lora_layers:
replacement_module = LoRALinear.from_linear(module)
linear_replacements.append((name, replacement_module))
model.update_modules(tree_unflatten(linear_replacements))
return model
def dequantize(model: nn.Module) -> nn.Module:
"""
Dequantize the quantized linear layers in the model.
Args:
model (nn.Module): The model with quantized linear layers.
Returns:
nn.Module: The model with dequantized layers.
"""
de_quantize_layers = []
for n, m in model.named_modules():
if isinstance(m, nn.QuantizedLinear):
bias = "bias" in m
weight = m.weight
weight = mx.dequantize(
weight,
m.scales,
m.biases,
m.group_size,
m.bits,
).astype(mx.float16)
output_dims, input_dims = weight.shape
linear = nn.Linear(input_dims, output_dims, bias=bias)
linear.weight = weight
if bias:
linear.bias = m.bias
de_quantize_layers.append((n, linear))
if len(de_quantize_layers) > 0:
model.update_modules(tree_unflatten(de_quantize_layers))
return model