![]() * LoRA:Refactor TrainingCallback to enhance flexibility and extensibility This commit refactors the TrainingCallback class to accept a dictionary parameter for both on_train_loss_report and on_val_loss_report methods. By switching from multiple parameters to a single dict parameter, this change significantly improves the class's flexibility and makes it easier to extend with new training or validation metrics in the future without altering the method signatures. This approach simplifies the addition of new information to be logged or processed and aligns with best practices for scalable and maintainable code design. * LoRA: Add printing and callbacks for learning rate during training |
||
---|---|---|
.circleci | ||
bert | ||
cifar | ||
clip | ||
cvae | ||
gcn | ||
llms | ||
lora | ||
mnist | ||
normalizing_flow | ||
speechcommands | ||
stable_diffusion | ||
t5 | ||
transformer_lm | ||
whisper | ||
.gitignore | ||
.pre-commit-config.yaml | ||
ACKNOWLEDGMENTS.md | ||
CODE_OF_CONDUCT.md | ||
CONTRIBUTING.md | ||
LICENSE | ||
README.md |
MLX Examples
This repo contains a variety of standalone examples using the MLX framework.
The MNIST example is a good starting point to learn how to use MLX.
Some more useful examples are listed below.
Text Models
- Transformer language model training.
- Large scale text generation with LLaMA, Mistral, Phi-2, and more in the LLMs directory.
- A mixture-of-experts (MoE) language model with Mixtral 8x7B.
- Parameter efficient fine-tuning with LoRA or QLoRA.
- Text-to-text multi-task Transformers with T5.
- Bidirectional language understanding with BERT.
Image Models
- Image classification using ResNets on CIFAR-10.
- Generating images with Stable Diffusion.
- Convolutional variational autoencoder (CVAE) on MNIST.
Audio Models
- Speech recognition with OpenAI's Whisper.
Multimodal models
- Joint text and image embeddings with CLIP.
Other Models
- Semi-supervised learning on graph-structured data with GCN.
- Real NVP normalizing flow for density estimation and sampling.
Hugging Face
Note: You can now directly download a few converted checkpoints from the MLX Community organization on Hugging Face. We encourage you to join the community and contribute new models.
Contributing
We are grateful for all of our contributors. If you contribute to MLX Examples and wish to be acknowledged, please add your name to the list in your pull request.
Citing MLX Examples
The MLX software suite was initially developed with equal contribution by Awni Hannun, Jagrit Digani, Angelos Katharopoulos, and Ronan Collobert. If you find MLX Examples useful in your research and wish to cite it, please use the following BibTex entry:
@software{mlx2023,
author = {Awni Hannun and Jagrit Digani and Angelos Katharopoulos and Ronan Collobert},
title = {{MLX}: Efficient and flexible machine learning on Apple silicon},
url = {https://github.com/ml-explore},
version = {0.0},
year = {2023},
}