mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-08-30 19:06:37 +08:00
![]() Add timeout handling to various `generate` functions across multiple files. * **cvae/main.py** - Add `timeout` parameter to `generate` function. - Implement timeout handling using `signal` module in `generate` function. * **flux/dreambooth.py** - Add `timeout` parameter to `generate_progress_images` function. - Implement timeout handling using `signal` module in `generate_progress_images` function. * **musicgen/generate.py** - Add `timeout` parameter to `main` function. - Implement timeout handling using `signal` module in `main` function. * **stable_diffusion/txt2image.py** - Add `timeout` parameter to `main` function. - Implement timeout handling using `signal` module in `main` function. * **llava/generate.py** - Add `timeout` parameter to `main` function. - Implement timeout handling using `signal` module in `main` function. * **llms/gguf_llm/generate.py** - Add `timeout` parameter to `generate` function. - Implement timeout handling using `signal` module in `generate` function. * **llms/mlx_lm/generate.py** - Add `timeout` parameter to `main` function. - Implement timeout handling using `signal` module in `main` function. --- For more details, open the [Copilot Workspace session](https://copilot-workspace.githubnext.com/jincdream/mlx-examples?shareId=XXXX-XXXX-XXXX-XXXX). |
||
---|---|---|
.. | ||
examples | ||
models | ||
tuner | ||
__init__.py | ||
_version.py | ||
cache_prompt.py | ||
chat.py | ||
convert.py | ||
fuse.py | ||
generate.py | ||
gguf.py | ||
LORA.md | ||
lora.py | ||
MANAGE.md | ||
manage.py | ||
MERGE.md | ||
merge.py | ||
py.typed | ||
README.md | ||
requirements.txt | ||
sample_utils.py | ||
SERVER.md | ||
server.py | ||
tokenizer_utils.py | ||
UPLOAD.md | ||
utils.py |
Generate Text with MLX and 🤗 Hugging Face
This an example of large language model text generation that can pull models from the Hugging Face Hub.
For more information on this example, see the README in the parent directory.
This package also supports fine tuning with LoRA or QLoRA. For more information see the LoRA documentation.