mlx-examples/llms/mlx_lm/tuner/utils.py
Madroid Ma 954aa50c54
LoRA: Improve validation error for LoRA layer count exceeding model layer (#427)
* LoRA: Improve validation error for LoRA layer count exceeding model layer

This commit enhances the error handling when the specified LoRA layer count exceeds the total number of layers in the model. It clarifies the error message to provide actionable feedback for users, guiding them to adjust their input parameters accordingly.

* format + nits

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-02-13 06:56:27 -08:00

144 lines
4.5 KiB
Python

import os
import mlx.core as mx
import mlx.nn as nn
from mlx.utils import tree_unflatten
from .lora import LoRALinear
def linear_to_lora_layers(model: nn.Module, num_lora_layers: int):
"""
Convert some of the models linear layers to lora layers.
Args:
model (nn.Module): The neural network model.
num_lora_layers (int): The number of blocks to convert to lora layers
starting from the last layer.
"""
def check_lora_layers(num_model):
if num_lora_layers > num_model:
raise ValueError(
f"Requested {num_lora_layers} LoRA layers "
f"but the model only has {num_model_layers} layers."
)
if model.model_type in [
"mistral",
"llama",
"phi",
"mixtral",
"stablelm_epoch",
"qwen2",
]:
check_lora_layers(len(model.model.layers))
for l in model.model.layers[len(model.model.layers) - num_lora_layers :]:
l.self_attn.q_proj = LoRALinear.from_linear(l.self_attn.q_proj)
l.self_attn.v_proj = LoRALinear.from_linear(l.self_attn.v_proj)
if hasattr(l, "block_sparse_moe"):
l.block_sparse_moe.gate = LoRALinear.from_linear(
l.block_sparse_moe.gate
)
elif model.model_type == "olmo":
check_lora_layers(len(model.model.transformer.blocks))
for l in model.model.transformer.blocks[
len(model.model.transformer.blocks) - num_lora_layers :
]:
l.att_proj = LoRALinear.from_linear(l.att_proj)
elif model.model_type == "phi-msft":
check_lora_layers(len(model.transformer.h))
for l in model.transformer.h[len(model.transformer.h) - num_lora_layers :]:
l.mixer.Wqkv = LoRALinear.from_linear(l.mixer.Wqkv)
l.moe.gate = LoRALinear.from_linear(l.moe.gate)
else:
raise ValueError(f"Lora does not support {model.model_type}")
def apply_lora_layers(model: nn.Module, adapter_file: str) -> nn.Module:
"""
Apply LoRA layers to the model.
Args:
model (nn.Module): The neural network model.
adapter_file (str): Path to the adapter configuration file.
Returns:
nn.Module: The updated model with LoRA layers applied.
"""
if not os.path.exists(adapter_file):
raise FileNotFoundError(f"The adapter file does not exist: {adapter_file}")
adapters = list(mx.load(adapter_file).items())
linear_replacements = []
lora_layers = set(
[name.replace(".lora_a", "").replace(".lora_b", "") for name, _ in adapters]
)
for name, module in model.named_modules():
if name in lora_layers:
replacement_module = LoRALinear.from_linear(module)
linear_replacements.append((name, replacement_module))
model.update_modules(tree_unflatten(linear_replacements))
model.update(tree_unflatten(adapters))
return model
def dequantize(model: nn.Module) -> nn.Module:
"""
Dequantize the quantized linear layers in the model.
Args:
model (nn.Module): The model with quantized linear layers.
Returns:
nn.Module: The model with dequantized layers.
"""
de_quantize_layers = []
for name, module in model.named_modules():
if isinstance(module, nn.QuantizedLinear):
bias = "bias" in module
weight = module.weight
weight = mx.dequantize(
weight,
module.scales,
module.biases,
module.group_size,
module.bits,
).astype(mx.float16)
output_dims, input_dims = weight.shape
linear = nn.Linear(input_dims, output_dims, bias=bias)
linear.weight = weight
if bias:
linear.bias = module.bias
de_quantize_layers.append((name, linear))
if len(de_quantize_layers) > 0:
model.update_modules(tree_unflatten(de_quantize_layers))
return model
def remove_lora_layers(model: nn.Module) -> nn.Module:
"""
Remove the LoRA layers from the model.
Args:
model (nn.Module): The model with LoRA layers.
Returns:
nn.Module: The model without LoRA layers.
"""
reset_layers = []
for name, module in model.named_modules():
if isinstance(module, LoRALinear):
reset_layers.append((name, module.linear))
if len(reset_layers) > 0:
model.update_modules(tree_unflatten(reset_layers))
return model