mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-07-03 23:31:14 +08:00
77 lines
1.9 KiB
Python
77 lines
1.9 KiB
Python
# Copyright © 2024 Apple Inc.
|
|
|
|
import math
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
|
|
|
|
class LoRALinear(nn.Module):
|
|
@staticmethod
|
|
def from_base(
|
|
linear: nn.Linear,
|
|
r: int = 8,
|
|
dropout: float = 0.0,
|
|
scale: float = 1.0,
|
|
):
|
|
output_dims, input_dims = linear.weight.shape
|
|
lora_lin = LoRALinear(
|
|
input_dims=input_dims,
|
|
output_dims=output_dims,
|
|
r=r,
|
|
dropout=dropout,
|
|
scale=scale,
|
|
)
|
|
lora_lin.linear = linear
|
|
return lora_lin
|
|
|
|
def fuse(self):
|
|
linear = self.linear
|
|
bias = "bias" in linear
|
|
weight = linear.weight
|
|
dtype = weight.dtype
|
|
|
|
output_dims, input_dims = weight.shape
|
|
fused_linear = nn.Linear(input_dims, output_dims, bias=bias)
|
|
|
|
lora_b = self.scale * self.lora_b.T
|
|
lora_a = self.lora_a.T
|
|
fused_linear.weight = weight + (lora_b @ lora_a).astype(dtype)
|
|
if bias:
|
|
fused_linear.bias = linear.bias
|
|
|
|
return fused_linear
|
|
|
|
def __init__(
|
|
self,
|
|
input_dims: int,
|
|
output_dims: int,
|
|
r: int = 8,
|
|
dropout: float = 0.0,
|
|
scale: float = 1.0,
|
|
bias: bool = False,
|
|
):
|
|
super().__init__()
|
|
|
|
# Regular linear layer weights
|
|
self.linear = nn.Linear(input_dims, output_dims, bias=bias)
|
|
|
|
self.dropout = nn.Dropout(p=dropout)
|
|
|
|
# Scale for low-rank update
|
|
self.scale = scale
|
|
|
|
# Low rank lora weights
|
|
scale = 1 / math.sqrt(input_dims)
|
|
self.lora_a = mx.random.uniform(
|
|
low=-scale,
|
|
high=scale,
|
|
shape=(input_dims, r),
|
|
)
|
|
self.lora_b = mx.zeros(shape=(r, output_dims))
|
|
|
|
def __call__(self, x):
|
|
y = self.linear(x)
|
|
z = (self.dropout(x) @ self.lora_a) @ self.lora_b
|
|
return y + (self.scale * z).astype(x.dtype)
|