mlx-examples/cifar/resnet.py
Markus Enzweiler 2b61d9deb6
Updated CIFAR-10 ResNet example to use BatchNorm instead of LayerNorm (#257)
* replaced nn.LayerNorm by nn.BatchNorm

* mlx>=0.0.8 required

* updated default to 30 epochs instead of 100

* updated README after adding BatchNorm

* requires mlx>=0.0.9

* updated README.md with results for mlx-0.0.9
2024-01-12 05:43:11 -08:00

130 lines
3.4 KiB
Python

"""
Implementation of ResNets for CIFAR-10 as per the original paper [https://arxiv.org/abs/1512.03385].
Configurations include ResNet-20, ResNet-32, ResNet-44, ResNet-56, ResNet-110, ResNet-1202.
"""
from typing import Any
import mlx.core as mx
import mlx.nn as nn
from mlx.utils import tree_flatten
__all__ = [
"ResNet",
"resnet20",
"resnet32",
"resnet44",
"resnet56",
"resnet110",
"resnet1202",
]
class ShortcutA(nn.Module):
def __init__(self, dims):
super().__init__()
self.dims = dims
def __call__(self, x):
return mx.pad(
x[:, ::2, ::2, :],
pad_width=[(0, 0), (0, 0), (0, 0), (self.dims // 4, self.dims // 4)],
)
class Block(nn.Module):
"""
Implements a ResNet block with two convolutional layers and a skip connection.
As per the paper, CIFAR-10 uses Shortcut type-A skip connections. (See paper for details)
"""
def __init__(self, in_dims, dims, stride=1):
super().__init__()
self.conv1 = nn.Conv2d(
in_dims, dims, kernel_size=3, stride=stride, padding=1, bias=False
)
self.bn1 = nn.BatchNorm(dims)
self.conv2 = nn.Conv2d(
dims, dims, kernel_size=3, stride=1, padding=1, bias=False
)
self.bn2 = nn.BatchNorm(dims)
if stride != 1:
self.shortcut = ShortcutA(dims)
else:
self.shortcut = None
def __call__(self, x):
out = nn.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
if self.shortcut is None:
out += x
else:
out += self.shortcut(x)
out = nn.relu(out)
return out
class ResNet(nn.Module):
"""
Creates a ResNet model for CIFAR-10, as specified in the original paper.
"""
def __init__(self, block, num_blocks, num_classes=10):
super().__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm(16)
self.layer1 = self._make_layer(block, 16, 16, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 16, 32, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 32, 64, num_blocks[2], stride=2)
self.linear = nn.Linear(64, num_classes)
def _make_layer(self, block, in_dims, dims, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(in_dims, dims, stride))
in_dims = dims
return nn.Sequential(*layers)
def num_params(self):
nparams = sum(x.size for k, x in tree_flatten(self.parameters()))
return nparams
def __call__(self, x):
x = nn.relu(self.bn1(self.conv1(x)))
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = mx.mean(x, axis=[1, 2]).reshape(x.shape[0], -1)
x = self.linear(x)
return x
def resnet20(**kwargs):
return ResNet(Block, [3, 3, 3], **kwargs)
def resnet32(**kwargs):
return ResNet(Block, [5, 5, 5], **kwargs)
def resnet44(**kwargs):
return ResNet(Block, [7, 7, 7], **kwargs)
def resnet56(**kwargs):
return ResNet(Block, [9, 9, 9], **kwargs)
def resnet110(**kwargs):
return ResNet(Block, [18, 18, 18], **kwargs)
def resnet1202(**kwargs):
return ResNet(Block, [200, 200, 200], **kwargs)