mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-25 01:41:19 +08:00

* add llms subdir + update README * nits * use same pre-commit as mlx * update readmes a bit * format
199 lines
6.4 KiB
Python
199 lines
6.4 KiB
Python
# Copyright © 2023 Apple Inc.
|
|
|
|
import math
|
|
import time
|
|
|
|
import datasets
|
|
import numpy as np
|
|
import torch
|
|
|
|
|
|
def to_samples(context_size, dataset):
|
|
tokens = dataset.size
|
|
window_size = context_size + 1 # include target
|
|
samples = tokens - window_size + 1
|
|
X = np.lib.stride_tricks.as_strided(
|
|
dataset,
|
|
shape=(samples, window_size),
|
|
strides=(dataset.itemsize, dataset.itemsize),
|
|
)
|
|
return X[:, :-1], X[:, 1:]
|
|
|
|
|
|
def iterate_batches(batch_size, context_size, dataset):
|
|
inputs, targets = to_samples(context_size, dataset)
|
|
s = 0
|
|
while True:
|
|
if s == 0:
|
|
# Reset permutation:
|
|
perm = np.random.permutation(inputs.shape[0])
|
|
ids = perm[s : s + batch_size]
|
|
yield inputs[ids], targets[ids]
|
|
s += batch_size
|
|
if s >= inputs.shape[0]:
|
|
s = 0
|
|
|
|
|
|
def create_additive_causal_mask(N, device):
|
|
# torch.nn.Transformer.generate_square_subsequent_mask
|
|
# gives NaNs with `device="mps"`
|
|
indices = torch.arange(N, device=device)
|
|
mask = indices.reshape((-1, 1)) < indices.reshape((1, -1))
|
|
return mask.to(torch.float32) * -1e9
|
|
|
|
|
|
class TransformerLM(torch.nn.Module):
|
|
def __init__(self, vocab_size, num_layers, num_heads, model_dims):
|
|
super().__init__()
|
|
|
|
self.embedding = torch.nn.Embedding(vocab_size, model_dims)
|
|
self.transformer = torch.nn.TransformerEncoder(
|
|
torch.nn.TransformerEncoderLayer(
|
|
model_dims,
|
|
num_heads,
|
|
4 * model_dims,
|
|
dropout=0.0,
|
|
norm_first=True,
|
|
batch_first=True,
|
|
),
|
|
num_layers,
|
|
)
|
|
self.projection = torch.nn.Linear(model_dims, vocab_size)
|
|
|
|
def forward(self, x):
|
|
mask = create_additive_causal_mask(x.shape[1], device=x.device)
|
|
x = self.embedding(x)
|
|
x = self.transformer(x, mask=mask)
|
|
x = self.projection(x)
|
|
return x
|
|
|
|
|
|
def main(args, device):
|
|
batch_size = args.batch_size
|
|
context_size = args.context_size
|
|
steps_per_eval = args.steps_per_eval
|
|
steps_per_report = args.steps_per_report
|
|
|
|
# Load vocab and dataset:
|
|
vocab, train, valid, test = datasets.ptb()
|
|
|
|
# Initialize model:
|
|
transformer = TransformerLM(len(vocab), args.num_blocks, args.num_heads, args.dim)
|
|
transformer = transformer.to(device)
|
|
optim = torch.optim.SGD(transformer.parameters(), lr=args.learning_rate, momentum=0)
|
|
nparams = sum(
|
|
p.numel() for n, p in transformer.named_parameters() if "embedding" not in n
|
|
)
|
|
print(f"Training a transformer with {nparams / 1024**2:.3f} M parameters")
|
|
|
|
@torch.no_grad()
|
|
def eval_fn(dataset):
|
|
inputs, targets = to_samples(context_size, dataset)
|
|
loss = 0
|
|
for s in range(0, targets.shape[0], batch_size):
|
|
bx, by = inputs[s : s + batch_size], targets[s : s + batch_size]
|
|
bx, by = map(lambda x: torch.from_numpy(x.astype(int)).to(device), [bx, by])
|
|
logits = transformer(bx)
|
|
losses = torch.nn.functional.cross_entropy(
|
|
logits.flatten(0, 1), by.flatten(), reduction="none"
|
|
)
|
|
losses = losses.view(-1, by.shape[-1]).mean(-1)
|
|
loss += losses.sum().item()
|
|
return loss / len(targets)
|
|
|
|
train_iterator = iterate_batches(batch_size, context_size, train)
|
|
losses = []
|
|
tic = time.perf_counter()
|
|
for it, (inputs, targets) in zip(range(args.num_iters), train_iterator):
|
|
inputs, targets = map(
|
|
lambda x: torch.from_numpy(x.astype(int)).to(device), [inputs, targets]
|
|
)
|
|
optim.zero_grad()
|
|
logits = transformer(inputs)
|
|
loss = torch.nn.functional.cross_entropy(
|
|
logits.flatten(0, 1), targets.flatten()
|
|
)
|
|
loss.backward()
|
|
optim.step()
|
|
losses.append(loss.item())
|
|
if (it + 1) % steps_per_report == 0:
|
|
train_loss = np.mean(losses)
|
|
toc = time.perf_counter()
|
|
print(
|
|
f"Iter {it + 1}: Train loss {train_loss:.3f}, "
|
|
f"It/sec {steps_per_report / (toc - tic):.3f}"
|
|
)
|
|
losses = []
|
|
tic = time.perf_counter()
|
|
|
|
if (it + 1) % steps_per_eval == 0:
|
|
val_loss = eval_fn(valid)
|
|
toc = time.perf_counter()
|
|
print(
|
|
f"Iter {it + 1}: "
|
|
f"Val loss {val_loss:.3f}, "
|
|
f"Val ppl {math.exp(val_loss):.3f}, "
|
|
f"Val took {(toc - tic):.3f}s, "
|
|
)
|
|
tic = time.perf_counter()
|
|
|
|
if args.eval_test:
|
|
test_loss = eval_fn(test)
|
|
test_ppl = math.exp(test_loss)
|
|
print(f"Test loss {test_loss:.3f}, Test ppl {test_ppl:.3f}.")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import argparse
|
|
|
|
parser = argparse.ArgumentParser("Train a decoder-only Transformer LM with MLX.")
|
|
parser.add_argument("--gpu", action="store_true", help="Use the Metal back-end.")
|
|
parser.add_argument("--seed", type=int, default=42, help="Seed for the RNGs.")
|
|
parser.add_argument(
|
|
"--context_size",
|
|
type=int,
|
|
default=1024,
|
|
help="Context size in tokens of the model.",
|
|
)
|
|
parser.add_argument(
|
|
"--num_blocks", type=int, default=12, help="Number of Transformer blocks."
|
|
)
|
|
parser.add_argument(
|
|
"--dim",
|
|
type=int,
|
|
default=1024,
|
|
help="Dimensionality of embeddings and hidden layers.",
|
|
)
|
|
parser.add_argument(
|
|
"--num_heads",
|
|
type=int,
|
|
default=16,
|
|
help="Number of heads used for multi-head attention",
|
|
)
|
|
parser.add_argument("--batch_size", type=int, default=2, help="Minibatch size.")
|
|
parser.add_argument(
|
|
"--num_iters", type=int, default=100000, help="Iterations to train for."
|
|
)
|
|
parser.add_argument(
|
|
"--learning_rate", type=float, default=1e-3, help="SGD learning rate."
|
|
)
|
|
parser.add_argument(
|
|
"--steps_per_report",
|
|
type=int,
|
|
default=10,
|
|
help="Number of training steps between loss reporting.",
|
|
)
|
|
parser.add_argument(
|
|
"--steps_per_eval",
|
|
type=int,
|
|
default=1000,
|
|
help="Number of training steps between validations.",
|
|
)
|
|
parser.add_argument(
|
|
"--eval_test",
|
|
action="store_true",
|
|
help="Evaluate on the test set after training",
|
|
)
|
|
args = parser.parse_args()
|
|
main(args, device="mps" if args.gpu else "cpu")
|