mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 09:21:18 +08:00
314 lines
9.6 KiB
Python
314 lines
9.6 KiB
Python
import argparse
|
|
import json
|
|
import math
|
|
from dataclasses import dataclass
|
|
from pathlib import Path
|
|
from typing import Optional, Tuple
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
from mlx.utils import tree_unflatten
|
|
from transformers import AutoTokenizer
|
|
|
|
|
|
@dataclass
|
|
class ModelArgs:
|
|
hidden_size: int = 4096
|
|
num_attention_heads: int = 32
|
|
num_hidden_layers: int = 32
|
|
num_key_value_heads: int = 32
|
|
max_position_embeddings: int = 16384
|
|
rms_norm_eps: float = 1e-6
|
|
intermediate_size: int = 11008
|
|
rope_theta: float = 100000
|
|
rope_scaling_factor: float = 4.0
|
|
vocab_size: int = 32256
|
|
|
|
|
|
class RMSNorm(nn.Module):
|
|
def __init__(self, dims: int, eps: float = 1e-5):
|
|
super().__init__()
|
|
self.weight = mx.ones((dims,))
|
|
self.eps = eps
|
|
|
|
def _norm(self, x):
|
|
return x * mx.rsqrt(x.square().mean(-1, keepdims=True) + self.eps)
|
|
|
|
def __call__(self, x):
|
|
output = self._norm(x.astype(mx.float32)).astype(x.dtype)
|
|
return self.weight * output
|
|
|
|
|
|
class LinearScalingRoPE(nn.RoPE):
|
|
def __init__(
|
|
self, dims: int, rope_scaling_factor: float = 4.0, base: float = 10000
|
|
):
|
|
super().__init__(dims)
|
|
self.base = base
|
|
self.rope_scaling_factor = rope_scaling_factor
|
|
|
|
def __call__(self, x, offset: int = 0):
|
|
shape = x.shape
|
|
x = mx.reshape(x, (-1, shape[-2], shape[-1]))
|
|
N = x.shape[1] + offset
|
|
costheta, sintheta = LinearScalingRoPE.create_cos_sin_theta(
|
|
N,
|
|
self.dims,
|
|
offset=offset,
|
|
base=self.base,
|
|
rope_scaling_factor=self.rope_scaling_factor,
|
|
dtype=x.dtype,
|
|
)
|
|
|
|
rx = self._compute_rope(costheta, sintheta, x)
|
|
|
|
return mx.reshape(rx, shape)
|
|
|
|
@staticmethod
|
|
def create_cos_sin_theta(
|
|
N: int,
|
|
D: int,
|
|
offset: int = 0,
|
|
base: float = 10000,
|
|
rope_scaling_factor: float = 1.0,
|
|
dtype=mx.float32,
|
|
):
|
|
D = D // 2
|
|
positions = mx.arange(offset, N, dtype=dtype)
|
|
positions = positions / rope_scaling_factor
|
|
freqs = mx.exp(-mx.arange(0.0, D, dtype=dtype) * (math.log(base) / D))
|
|
theta = mx.reshape(positions, (-1, 1)) * mx.reshape(freqs, (1, -1))
|
|
return mx.cos(theta), mx.sin(theta)
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.num_attention_heads: int = args.num_attention_heads
|
|
self.num_key_value_heads: int = args.num_key_value_heads
|
|
self.repeats = self.num_attention_heads // self.num_key_value_heads
|
|
|
|
self.head_dim = args.hidden_size // args.num_attention_heads
|
|
|
|
self.scale = self.head_dim**-0.5
|
|
|
|
self.wq = nn.Linear(
|
|
args.hidden_size, args.num_attention_heads * self.head_dim, bias=False
|
|
)
|
|
self.wk = nn.Linear(
|
|
args.hidden_size, args.num_key_value_heads * self.head_dim, bias=False
|
|
)
|
|
self.wv = nn.Linear(
|
|
args.hidden_size, args.num_key_value_heads * self.head_dim, bias=False
|
|
)
|
|
self.wo = nn.Linear(
|
|
args.num_attention_heads * self.head_dim, args.hidden_size, bias=False
|
|
)
|
|
self.rope = LinearScalingRoPE(
|
|
self.head_dim,
|
|
rope_scaling_factor=args.rope_scaling_factor,
|
|
base=args.rope_theta,
|
|
)
|
|
|
|
def __call__(
|
|
self,
|
|
x: mx.array,
|
|
mask: Optional[mx.array] = None,
|
|
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
|
) -> mx.array:
|
|
B, L, D = x.shape
|
|
|
|
queries, keys, values = self.wq(x), self.wk(x), self.wv(x)
|
|
|
|
# Prepare the queries, keys and values for the attention computation
|
|
queries = queries.reshape(B, L, self.num_attention_heads, -1).transpose(
|
|
0, 2, 1, 3
|
|
)
|
|
keys = keys.reshape(B, L, self.num_key_value_heads, -1).transpose(0, 2, 1, 3)
|
|
values = values.reshape(B, L, self.num_key_value_heads, -1).transpose(
|
|
0, 2, 1, 3
|
|
)
|
|
|
|
def repeat(a):
|
|
a = mx.concatenate([mx.expand_dims(a, 2)] * self.repeats, axis=2)
|
|
return a.reshape([B, self.num_attention_heads, L, -1])
|
|
|
|
keys, values = map(repeat, (keys, values))
|
|
|
|
if cache is not None:
|
|
key_cache, value_cache = cache
|
|
queries = self.rope(queries, offset=key_cache.shape[2])
|
|
keys = self.rope(keys, offset=key_cache.shape[2])
|
|
keys = mx.concatenate([key_cache, keys], axis=2)
|
|
values = mx.concatenate([value_cache, values], axis=2)
|
|
else:
|
|
queries = self.rope(queries)
|
|
keys = self.rope(keys)
|
|
|
|
scores = (queries * self.scale) @ keys.transpose(0, 1, 3, 2)
|
|
if mask is not None:
|
|
scores += mask
|
|
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype)
|
|
output = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
return self.wo(output), (keys, values)
|
|
|
|
|
|
class FeedForward(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.w1 = nn.Linear(args.hidden_size, args.intermediate_size, bias=False)
|
|
self.w2 = nn.Linear(args.intermediate_size, args.hidden_size, bias=False)
|
|
self.w3 = nn.Linear(args.hidden_size, args.intermediate_size, bias=False)
|
|
|
|
def __call__(self, x) -> mx.array:
|
|
return self.w2(nn.silu(self.w1(x)) * self.w3(x))
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.attention = Attention(args)
|
|
self.feed_forward = FeedForward(args=args)
|
|
self.attention_norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
|
self.ffn_norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
|
|
|
def __call__(
|
|
self,
|
|
x: mx.array,
|
|
mask: Optional[mx.array] = None,
|
|
cache: Optional[Tuple[mx.array, mx.array]] = None,
|
|
) -> mx.array:
|
|
r, cache = self.attention(self.attention_norm(x), mask, cache)
|
|
h = x + r
|
|
r = self.feed_forward(self.ffn_norm(h))
|
|
out = h + r
|
|
return out, cache
|
|
|
|
|
|
class DeepseekCoder(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.args = args
|
|
self.vocab_size = args.vocab_size
|
|
self.tok_embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
|
|
self.layers = [
|
|
TransformerBlock(args=args) for _ in range(args.num_hidden_layers)
|
|
]
|
|
self.norm = RMSNorm(args.hidden_size, eps=args.rms_norm_eps)
|
|
self.output = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
|
|
|
def __call__(self, x, mask=None, cache=None):
|
|
x = self.tok_embeddings(x)
|
|
mask = None
|
|
T = x.shape[1]
|
|
if T > 1:
|
|
mask = nn.MultiHeadAttention.create_additive_causal_mask(T)
|
|
mask = mask.astype(x.dtype)
|
|
|
|
if cache is None:
|
|
cache = [None] * len(self.layers)
|
|
|
|
for e, layer in enumerate(self.layers):
|
|
x, cache[e] = layer(x, mask, cache[e])
|
|
x = self.norm(x)
|
|
return self.output(x), cache
|
|
|
|
|
|
def generate(
|
|
prompt: mx.array,
|
|
model: DeepseekCoder,
|
|
temp: float = 0.0,
|
|
):
|
|
def sample(logits):
|
|
if temp == 0:
|
|
return mx.argmax(logits, axis=-1)
|
|
else:
|
|
return mx.random.categorical(logits * (1 / temp))
|
|
|
|
y = prompt
|
|
cache = None
|
|
while True:
|
|
logits, cache = model(y[None], cache=cache)
|
|
logits = logits[:, -1, :]
|
|
y = sample(logits)
|
|
yield y
|
|
|
|
|
|
def load_model(model_path: str):
|
|
model_path = Path(model_path)
|
|
with open(model_path / "config.json", "r") as f:
|
|
config = json.load(f)
|
|
config.pop("model_type")
|
|
quantization = config.pop("quantization", None)
|
|
model_args = ModelArgs(**config)
|
|
|
|
model = DeepseekCoder(model_args)
|
|
weights = mx.load(str(model_path / "weights.npz"))
|
|
if quantization is not None:
|
|
nn.QuantizedLinear.quantize_module(model, **quantization)
|
|
model.update(tree_unflatten(list(weights.items())))
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
|
return model, tokenizer
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Deepseek coder inference script")
|
|
parser.add_argument(
|
|
"--model-path",
|
|
type=str,
|
|
default="mlx_model",
|
|
help="The path to the mlx model weights, tokenizer, and config",
|
|
)
|
|
parser.add_argument(
|
|
"--prompt",
|
|
help="The message to be processed by the model",
|
|
default="### Instruction: \nwrite a quick sort algorithm in python.\n### Response: \n",
|
|
)
|
|
parser.add_argument(
|
|
"--max-tokens",
|
|
"-m",
|
|
type=int,
|
|
default=100,
|
|
help="Maximum number of tokens to generate",
|
|
)
|
|
parser.add_argument(
|
|
"--temp",
|
|
help="The sampling temperature.",
|
|
type=float,
|
|
default=0.6,
|
|
)
|
|
parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
|
|
args = parser.parse_args()
|
|
|
|
mx.random.seed(args.seed)
|
|
|
|
model, tokenizer = load_model(args.model_path)
|
|
|
|
prompt = tokenizer(
|
|
args.prompt,
|
|
return_tensors="np",
|
|
return_attention_mask=False,
|
|
)[
|
|
"input_ids"
|
|
][0]
|
|
|
|
prompt = mx.array(prompt)
|
|
|
|
print(args.prompt, end="", flush=True)
|
|
|
|
tokens = []
|
|
skip = 0
|
|
for token, _ in zip(
|
|
generate(prompt, model, args.temp),
|
|
range(args.max_tokens),
|
|
):
|
|
if token == tokenizer.eos_token_id:
|
|
break
|
|
tokens.append(token.item())
|
|
s = tokenizer.decode(tokens)
|
|
print(s[skip:], end="", flush=True)
|
|
skip = len(s)
|
|
|
|
print(tokenizer.decode(tokens)[skip:], flush=True)
|