mirror of
				https://github.com/ml-explore/mlx-examples.git
				synced 2025-10-31 19:18:09 +08:00 
			
		
		
		
	 f45a1ab83c
			
		
	
	f45a1ab83c
	
	
	
		
			
			* update a few examples to use compile * update mnist * add compile to vae and rename some stuff for simplicity * update reqs * use state in eval * GCN example with RNG + dropout * add a bit of prefetching
		
			
				
	
	
		
			173 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			173 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright © 2023-2024 Apple Inc.
 | |
| 
 | |
| import math
 | |
| 
 | |
| import mlx.core as mx
 | |
| import mlx.nn as nn
 | |
| 
 | |
| 
 | |
| # from https://github.com/ml-explore/mlx-examples/blob/main/stable_diffusion/stable_diffusion/unet.py
 | |
| def upsample_nearest(x, scale: int = 2):
 | |
|     B, H, W, C = x.shape
 | |
|     x = mx.broadcast_to(x[:, :, None, :, None, :], (B, H, scale, W, scale, C))
 | |
|     x = x.reshape(B, H * scale, W * scale, C)
 | |
|     return x
 | |
| 
 | |
| 
 | |
| class UpsamplingConv2d(nn.Module):
 | |
|     """
 | |
|     A convolutional layer that upsamples the input by a factor of 2. MLX does
 | |
|     not yet support transposed convolutions, so we approximate them with
 | |
|     nearest neighbor upsampling followed by a convolution. This is similar to
 | |
|     the approach used in the original U-Net.
 | |
|     """
 | |
| 
 | |
|     def __init__(self, in_channels, out_channels, kernel_size, stride, padding):
 | |
|         super().__init__()
 | |
|         self.conv = nn.Conv2d(
 | |
|             in_channels, out_channels, kernel_size, stride=stride, padding=padding
 | |
|         )
 | |
| 
 | |
|     def __call__(self, x):
 | |
|         x = self.conv(upsample_nearest(x))
 | |
|         return x
 | |
| 
 | |
| 
 | |
| class Encoder(nn.Module):
 | |
|     """
 | |
|     A convolutional variational encoder.
 | |
|     Maps the input to a normal distribution in latent space and sample a latent
 | |
|     vector from that distribution.
 | |
|     """
 | |
| 
 | |
|     def __init__(self, num_latent_dims, image_shape, max_num_filters):
 | |
|         super().__init__()
 | |
| 
 | |
|         # number of filters in the convolutional layers
 | |
|         num_filters_1 = max_num_filters // 4
 | |
|         num_filters_2 = max_num_filters // 2
 | |
|         num_filters_3 = max_num_filters
 | |
| 
 | |
|         # Output (BHWC):  B x 32 x 32 x num_filters_1
 | |
|         self.conv1 = nn.Conv2d(image_shape[-1], num_filters_1, 3, stride=2, padding=1)
 | |
|         # Output (BHWC):  B x 16 x 16 x num_filters_2
 | |
|         self.conv2 = nn.Conv2d(num_filters_1, num_filters_2, 3, stride=2, padding=1)
 | |
|         # Output (BHWC):  B x 8 x 8 x num_filters_3
 | |
|         self.conv3 = nn.Conv2d(num_filters_2, num_filters_3, 3, stride=2, padding=1)
 | |
| 
 | |
|         # Batch Normalization
 | |
|         self.bn1 = nn.BatchNorm(num_filters_1)
 | |
|         self.bn2 = nn.BatchNorm(num_filters_2)
 | |
|         self.bn3 = nn.BatchNorm(num_filters_3)
 | |
| 
 | |
|         # Divide the spatial dimensions by 8 because of the 3 strided convolutions
 | |
|         output_shape = [num_filters_3] + [
 | |
|             dimension // 8 for dimension in image_shape[:-1]
 | |
|         ]
 | |
| 
 | |
|         flattened_dim = math.prod(output_shape)
 | |
| 
 | |
|         # Linear mappings to mean and standard deviation
 | |
|         self.proj_mu = nn.Linear(flattened_dim, num_latent_dims)
 | |
|         self.proj_log_var = nn.Linear(flattened_dim, num_latent_dims)
 | |
| 
 | |
|     def __call__(self, x):
 | |
|         x = nn.leaky_relu(self.bn1(self.conv1(x)))
 | |
|         x = nn.leaky_relu(self.bn2(self.conv2(x)))
 | |
|         x = nn.leaky_relu(self.bn3(self.conv3(x)))
 | |
|         x = mx.flatten(x, 1)  # flatten all dimensions except batch
 | |
| 
 | |
|         mu = self.proj_mu(x)
 | |
|         logvar = self.proj_log_var(x)
 | |
|         # Ensure this is the std deviation, not variance
 | |
|         sigma = mx.exp(logvar * 0.5)
 | |
| 
 | |
|         # Generate a tensor of random values from a normal distribution
 | |
|         eps = mx.random.normal(sigma.shape)
 | |
| 
 | |
|         # Reparametrization trick to brackpropagate through sampling.
 | |
|         z = eps * sigma + mu
 | |
| 
 | |
|         return z, mu, logvar
 | |
| 
 | |
| 
 | |
| class Decoder(nn.Module):
 | |
|     """A convolutional decoder"""
 | |
| 
 | |
|     def __init__(self, num_latent_dims, image_shape, max_num_filters):
 | |
|         super().__init__()
 | |
|         self.num_latent_dims = num_latent_dims
 | |
|         num_img_channels = image_shape[-1]
 | |
|         self.max_num_filters = max_num_filters
 | |
| 
 | |
|         # decoder layers
 | |
|         num_filters_1 = max_num_filters
 | |
|         num_filters_2 = max_num_filters // 2
 | |
|         num_filters_3 = max_num_filters // 4
 | |
| 
 | |
|         # divide the last two dimensions by 8 because of the 3 upsampling convolutions
 | |
|         self.input_shape = [dimension // 8 for dimension in image_shape[:-1]] + [
 | |
|             num_filters_1
 | |
|         ]
 | |
|         flattened_dim = math.prod(self.input_shape)
 | |
| 
 | |
|         # Output: flattened_dim
 | |
|         self.lin1 = nn.Linear(num_latent_dims, flattened_dim)
 | |
|         # Output (BHWC):  B x 16 x 16 x num_filters_2
 | |
|         self.upconv1 = UpsamplingConv2d(
 | |
|             num_filters_1, num_filters_2, 3, stride=1, padding=1
 | |
|         )
 | |
|         # Output (BHWC):  B x 32 x 32 x num_filters_1
 | |
|         self.upconv2 = UpsamplingConv2d(
 | |
|             num_filters_2, num_filters_3, 3, stride=1, padding=1
 | |
|         )
 | |
|         # Output (BHWC):  B x 64 x 64 x #img_channels
 | |
|         self.upconv3 = UpsamplingConv2d(
 | |
|             num_filters_3, num_img_channels, 3, stride=1, padding=1
 | |
|         )
 | |
| 
 | |
|         # Batch Normalizations
 | |
|         self.bn1 = nn.BatchNorm(num_filters_2)
 | |
|         self.bn2 = nn.BatchNorm(num_filters_3)
 | |
| 
 | |
|     def __call__(self, z):
 | |
|         x = self.lin1(z)
 | |
| 
 | |
|         # reshape to BHWC
 | |
|         x = x.reshape(
 | |
|             -1, self.input_shape[0], self.input_shape[1], self.max_num_filters
 | |
|         )
 | |
| 
 | |
|         # approximate transposed convolutions with nearest neighbor upsampling
 | |
|         x = nn.leaky_relu(self.bn1(self.upconv1(x)))
 | |
|         x = nn.leaky_relu(self.bn2(self.upconv2(x)))
 | |
|         # sigmoid to ensure pixel values are in [0,1]
 | |
|         x = mx.sigmoid(self.upconv3(x))
 | |
|         return x
 | |
| 
 | |
| 
 | |
| class CVAE(nn.Module):
 | |
|     """
 | |
|     A convolutional variational autoencoder consisting of an encoder and a
 | |
|     decoder.
 | |
|     """
 | |
| 
 | |
|     def __init__(self, num_latent_dims, input_shape, max_num_filters):
 | |
|         super().__init__()
 | |
|         self.num_latent_dims = num_latent_dims
 | |
|         self.encoder = Encoder(num_latent_dims, input_shape, max_num_filters)
 | |
|         self.decoder = Decoder(num_latent_dims, input_shape, max_num_filters)
 | |
| 
 | |
|     def __call__(self, x):
 | |
|         # image to latent vector
 | |
|         z, mu, logvar = self.encoder(x)
 | |
|         # latent vector to image
 | |
|         x = self.decode(z)
 | |
|         return x, mu, logvar
 | |
| 
 | |
|     def encode(self, x):
 | |
|         return self.encoder(x)[0]
 | |
| 
 | |
|     def decode(self, z):
 | |
|         return self.decoder(z)
 |