mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-12-16 02:08:55 +08:00
899 lines
30 KiB
Python
899 lines
30 KiB
Python
import math
|
|
from dataclasses import dataclass, field
|
|
from typing import Tuple, Union
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
|
|
from .base import BaseModelArgs
|
|
from .cache import MambaCache
|
|
|
|
@dataclass
|
|
class ModelArgs(BaseModelArgs):
|
|
model_type: str
|
|
num_heads: int
|
|
head_dim: int
|
|
vocab_size: int
|
|
hidden_size: int
|
|
state_size: int
|
|
num_hidden_layers: int
|
|
layer_norm_epsilon: float
|
|
expand: int
|
|
conv_kernel: int
|
|
n_groups: int
|
|
use_bias: bool
|
|
use_conv_bias: bool
|
|
initializer_range: float
|
|
residual_in_fp32: bool
|
|
chunk_size: int
|
|
tie_word_embeddings: bool
|
|
time_step_limit: Tuple[float, float]
|
|
time_step_rank: Union[int, str]
|
|
time_step_min: float
|
|
time_step_max: float
|
|
time_step_floor: float
|
|
norm_before_gate: bool = True
|
|
|
|
def __post_init__(self):
|
|
if not hasattr(self, "intermediate_size"):
|
|
self.intermediate_size = int(self.expand * self.hidden_size)
|
|
if not hasattr(self, "head_dim"):
|
|
self.head_dim = self.hidden_size // self.num_heads
|
|
if self.time_step_rank == "auto":
|
|
self.time_step_rank = math.ceil(self.hidden_size / 16)
|
|
|
|
|
|
def segsum(x):
|
|
"""Stable segment sum calculation.
|
|
|
|
`exp(segsum(A))` produces a 1-semiseparable matrix, which is equivalent to a scalar SSM.
|
|
"""
|
|
T = x.shape[-1]
|
|
x = mx.expand_dims(x, -1)
|
|
x = mx.repeat(x, T, axis=-1)
|
|
mask = mx.tril(mx.ones((T, T), dtype=mx.bool_), k=-1)
|
|
x = mx.where(mask, x, 0)
|
|
x_segsum = mx.cumsum(x, axis=-2)
|
|
mask = mx.tril(mx.ones((T, T), dtype=mx.bool_), k=0)
|
|
x_segsum = mx.where(mask, x_segsum, -mx.inf)
|
|
return x_segsum
|
|
|
|
def ssd(x, A, B, C, chunk_size, initial_states=None):
|
|
"""Structured State Space Duality (SSD) - the core of Mamba-2
|
|
|
|
Arguments
|
|
x: (batch, seqlen, n_heads, d_head)
|
|
A: (batch, seqlen, n_heads)
|
|
B: (batch, seqlen, n_heads, d_state)
|
|
C: (batch, seqlen, n_heads, d_state)
|
|
|
|
Return
|
|
y: (batch, seqlen, n_heads, d_head)
|
|
final_state: final state for inference
|
|
"""
|
|
assert x.shape[1] % chunk_size == 0
|
|
|
|
# Rearrange into chunks
|
|
def rearrange_to_chunks(m):
|
|
shape = list(m.shape)
|
|
shape[1:2] = [shape[1] // chunk_size, chunk_size]
|
|
return m.reshape(shape)
|
|
|
|
x_chunked = rearrange_to_chunks(x)
|
|
A_chunked = rearrange_to_chunks(A)
|
|
B_chunked = rearrange_to_chunks(B)
|
|
C_chunked = rearrange_to_chunks(C)
|
|
|
|
# Transpose A for easier cumsum
|
|
A_chunked = mx.transpose(A_chunked, (0, 3, 1, 2)) # b c l h -> b h c l
|
|
A_cumsum = mx.cumsum(A_chunked, axis=-1)
|
|
|
|
# 1. Compute the output for each intra-chunk (diagonal blocks)
|
|
L = mx.exp(segsum(A_chunked))
|
|
Y_diag = mx.einsum("bclhn,bcshn,bhcls,bcshp->bclhp", C_chunked, B_chunked, L, x_chunked)
|
|
|
|
# 2. Compute the state for each intra-chunk
|
|
decay_states = mx.exp(A_cumsum[:, :, :, -1:] - A_cumsum)
|
|
states = mx.einsum("bclhn,bhcl,bclhp->bchpn", B_chunked, decay_states, x_chunked)
|
|
|
|
# 3. Compute the inter-chunk SSM recurrence
|
|
if initial_states is None:
|
|
initial_states = mx.zeros_like(states[:, :1])
|
|
states = mx.concatenate([initial_states, states], axis=1)
|
|
|
|
A_cumsum_last = A_cumsum[:, :, :, -1]
|
|
A_cumsum_padded = mx.pad(A_cumsum_last, [(0, 0), (0, 0), (1, 0)])
|
|
decay_chunk = mx.exp(segsum(A_cumsum_padded))
|
|
new_states = mx.einsum("bhzc,bchpn->bzhpn", decay_chunk, states)
|
|
states, final_state = new_states[:, :-1], new_states[:, -1]
|
|
|
|
# 4. Compute state -> output conversion per chunk
|
|
state_decay_out = mx.exp(A_cumsum)
|
|
Y_off = mx.einsum("bclhn,bchpn,bhcl->bclhp", C_chunked, states, state_decay_out)
|
|
|
|
# Add output of intra-chunk and inter-chunk terms
|
|
Y_combined = Y_diag + Y_off
|
|
|
|
# Reshape back to original sequence shape
|
|
batch, chunks, chunk_len, heads, head_dim = Y_combined.shape
|
|
Y = Y_combined.reshape(batch, chunks * chunk_len, heads, head_dim)
|
|
|
|
return Y, final_state
|
|
|
|
def silu(x):
|
|
"""Applies the Sigmoid Linear Unit (SiLU), element-wise."""
|
|
return x * mx.sigmoid(x)
|
|
|
|
|
|
class Mamba2Block(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.args = args
|
|
self.d_model = args.hidden_size
|
|
self.d_state = args.state_size
|
|
self.d_conv = args.conv_kernel
|
|
self.expand = args.expand
|
|
self.d_inner = int(self.expand * self.d_model)
|
|
self.n_groups = args.n_groups
|
|
self.n_heads = args.num_heads
|
|
self.d_head = self.d_inner // self.n_heads
|
|
self.chunk_size = args.chunk_size
|
|
|
|
d_in_proj = 2 * self.d_inner + 2 * self.n_groups * self.d_state + self.n_heads
|
|
self.in_proj = nn.Linear(self.d_model, d_in_proj, bias=args.use_bias)
|
|
|
|
self.dt_bias = mx.random.normal((self.n_heads,)) * args.initializer_range
|
|
self.A_log = mx.random.normal((self.n_heads,)) * args.initializer_range
|
|
self.D = mx.random.normal((self.n_heads,)) * args.initializer_range
|
|
|
|
# Use standard Conv1d with groups for depthwise convolution
|
|
conv_dim = self.d_inner + 2 * self.n_groups * self.d_state
|
|
self.conv1d = nn.Conv1d(
|
|
in_channels=conv_dim,
|
|
out_channels=conv_dim,
|
|
kernel_size=self.d_conv,
|
|
groups=conv_dim, # Makes it depthwise
|
|
padding=self.d_conv-1,
|
|
bias=args.use_conv_bias
|
|
)
|
|
|
|
self.norm = nn.RMSNorm(self.d_inner, eps=args.layer_norm_epsilon)
|
|
self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=args.use_bias)
|
|
|
|
def __call__(self, u, cache=None):
|
|
"""
|
|
Arguments
|
|
u: (batch, seqlen, d_model) input
|
|
cache: Optional tuple of (conv_state, ssm_state) for inference
|
|
|
|
Return (y, cache)
|
|
y: (batch, seqlen, d_model) output
|
|
cache: updated tuple of (conv_state, ssm_state) for inference
|
|
"""
|
|
if cache is not None:
|
|
return self.step(u, cache)
|
|
|
|
# Initialize cache if needed
|
|
if cache is None:
|
|
cache = [None, None] # Initialize with None values
|
|
|
|
# Compute projections
|
|
zxbcdt = self.in_proj(u)
|
|
|
|
# Split projections
|
|
d_inner = self.d_inner
|
|
d_state = self.n_groups * self.d_state
|
|
|
|
z, xBC, dt = mx.split(
|
|
zxbcdt,
|
|
[d_inner, d_inner + 2 * d_state],
|
|
axis=-1
|
|
)
|
|
|
|
# Process dt with softplus
|
|
dt = mx.softplus(dt + self.dt_bias) # (batch, seqlen, n_heads)
|
|
|
|
# Apply convolution to xBC
|
|
xBC_transposed = mx.transpose(xBC, (0, 2, 1)) # (batch, d, seqlen)
|
|
xBC_conv = self.conv1d(xBC_transposed)
|
|
xBC_conv = mx.transpose(xBC_conv, (0, 2, 1)) # (batch, seqlen, d)
|
|
xBC = silu(xBC_conv[:, :u.shape[1], :]) # Ensure we only keep seqlen elements
|
|
|
|
# Split xBC into x, B, C
|
|
x, B, C = mx.split(
|
|
xBC,
|
|
[d_inner, d_inner + d_state],
|
|
axis=-1
|
|
)
|
|
|
|
# Reshape x for heads
|
|
batch, seqlen = x.shape[0], x.shape[1]
|
|
x_reshaped = x.reshape(batch, seqlen, self.n_heads, self.d_head)
|
|
|
|
# Reshape B and C for SSM
|
|
B = B.reshape(batch, seqlen, 1, d_state)
|
|
C = C.reshape(batch, seqlen, 1, d_state)
|
|
|
|
# Apply SSM with SSD algorithm
|
|
A = -mx.exp(self.A_log) # (n_heads,)
|
|
A_dt = A * dt # (batch, seqlen, n_heads)
|
|
|
|
y, ssm_state = ssd(
|
|
x_reshaped * mx.expand_dims(dt, -1), # Scale x by dt
|
|
A_dt,
|
|
B,
|
|
C,
|
|
self.chunk_size
|
|
)
|
|
|
|
# Apply D and reshape
|
|
y = y + x_reshaped * mx.reshape(self.D, (1, 1, self.n_heads, 1))
|
|
y = y.reshape(batch, seqlen, d_inner)
|
|
|
|
# Apply norm and gating
|
|
y = self.norm(y, z)
|
|
|
|
# Final projection
|
|
y = self.out_proj(y)
|
|
|
|
# Create cache for inference
|
|
if seqlen == 1 and cache is not None:
|
|
conv_state = mx.zeros((batch, d_inner + 2 * d_state, self.d_conv))
|
|
conv_state = mx.update_slice(conv_state, xBC.reshape(batch, -1, 1), (0, 0, self.d_conv - 1))
|
|
cache[0] = conv_state
|
|
cache[1] = ssm_state
|
|
|
|
return y, cache
|
|
|
|
def step(self, u, cache):
|
|
"""Take an inference step for the current input and cache
|
|
|
|
Arguments
|
|
u: (batch, seqlen, d_model) - can be multiple tokens
|
|
cache: tuple of (conv_state, ssm_state)
|
|
|
|
Return (y, cache)
|
|
y: (batch, seqlen, d_model)
|
|
cache: updated cache object
|
|
"""
|
|
batch, seqlen = u.shape[0], u.shape[1]
|
|
|
|
# Initialize cache if it's None
|
|
if cache[0] is None or cache[1] is None:
|
|
d_state = self.n_groups * self.d_state
|
|
conv_dim = self.d_inner + 2 * d_state
|
|
conv_state = mx.zeros((batch, conv_dim, self.d_conv))
|
|
|
|
# Fix: use correct state size per head
|
|
state_per_head = d_state // self.n_heads
|
|
ssm_state = mx.zeros((batch, self.n_heads, self.d_head, state_per_head))
|
|
else:
|
|
conv_state, ssm_state = cache[0], cache[1]
|
|
|
|
# Project input
|
|
zxbcdt = self.in_proj(u) # (batch, seqlen, d_in_proj)
|
|
|
|
# Split projections
|
|
d_inner = self.d_inner
|
|
d_state = self.n_groups * self.d_state
|
|
|
|
z, xBC, dt = mx.split(
|
|
zxbcdt,
|
|
[d_inner, d_inner + 2 * d_state],
|
|
axis=-1
|
|
)
|
|
|
|
# Process each token through the convolution sequentially
|
|
outputs = []
|
|
for i in range(seqlen):
|
|
# Get current token's input
|
|
xBC_i = xBC[:, i] # (batch, d_inner + 2*d_state)
|
|
dt_i = dt[:, i] # (batch, dt_size)
|
|
|
|
# Extract the head-specific dt values
|
|
dt_size = dt_i.shape[-1]
|
|
|
|
if dt_size % self.n_heads == 0:
|
|
# Reshape dt_i to extract the head-specific values
|
|
dt_reshaped = dt_i.reshape(batch, self.n_heads, dt_size // self.n_heads)
|
|
# Take the first element for each head
|
|
dt_heads = dt_reshaped[:, :, 0]
|
|
else:
|
|
# If we can't reshape, just take the first n_heads elements
|
|
dt_heads = dt_i[:, :self.n_heads]
|
|
|
|
|
|
# Process dt with softplus
|
|
dt_heads = nn.softplus(dt_heads + self.dt_bias.reshape(1, -1)) # (batch, n_heads)
|
|
|
|
# Update convolution state
|
|
conv_state = mx.roll(conv_state, shift=-1, axis=-1)
|
|
|
|
# Use slice_update instead of update_slice
|
|
# Reshape xBC_i to match the expected shape for the update
|
|
xBC_reshaped = xBC_i.reshape(batch, -1, 1)
|
|
# Create start_indices for the update
|
|
start_indices = mx.array([0, 0, self.d_conv - 1])
|
|
# Update the conv_state
|
|
conv_state = mx.slice_update(
|
|
conv_state,
|
|
xBC_reshaped,
|
|
start_indices,
|
|
axes=(0, 1, 2)
|
|
)
|
|
|
|
# Apply convolution step
|
|
weight = self.conv1d.weight
|
|
bias = self.conv1d.bias if self.args.use_conv_bias else None
|
|
|
|
xBC_conv = mx.sum(conv_state * weight.reshape(1, -1, self.d_conv), axis=-1)
|
|
if bias is not None:
|
|
xBC_conv = xBC_conv + bias
|
|
|
|
xBC_conv = silu(xBC_conv)
|
|
|
|
# Split xBC
|
|
x_i, B_i, C_i = mx.split(
|
|
xBC_conv,
|
|
[d_inner, d_inner + d_state],
|
|
axis=-1
|
|
)
|
|
|
|
# Apply SSM step
|
|
A = -mx.exp(self.A_log) # (n_heads,)
|
|
dA = mx.exp(dt_heads * A) # (batch, n_heads)
|
|
|
|
# Reshape x for heads
|
|
x_i = x_i.reshape(batch, self.n_heads, self.d_head)
|
|
|
|
# Reshape B and C for SSM with correct dimensions
|
|
state_per_head = d_state // self.n_heads
|
|
B_i_reshaped = B_i.reshape(batch, self.n_heads, state_per_head)
|
|
C_i_reshaped = C_i.reshape(batch, self.n_heads, state_per_head)
|
|
|
|
# Calculate dBx with the correctly shaped B
|
|
dBx = mx.einsum("bhn,bhp->bhpn", B_i_reshaped, x_i * mx.expand_dims(dt_heads, -1))
|
|
|
|
# Update SSM state
|
|
ssm_state = ssm_state * mx.reshape(dA, (batch, self.n_heads, 1, 1)) + dBx
|
|
|
|
# Calculate output with the correctly shaped C
|
|
y_i = mx.einsum("bhpn,bhn->bhp", ssm_state, C_i_reshaped)
|
|
|
|
# Apply D and reshape
|
|
y_i = y_i + x_i * mx.reshape(self.D, (1, self.n_heads, 1))
|
|
|
|
# Reshape y
|
|
y_i = y_i.reshape(batch, d_inner)
|
|
|
|
# Apply norm and gating (SwiGLU-like activation)
|
|
y_i = self.norm(y_i) # Just normalize without gating
|
|
y_i = y_i * nn.sigmoid(z[:, i]) # Apply gating separately
|
|
|
|
# Final projection
|
|
y_i = self.out_proj(y_i)
|
|
|
|
outputs.append(y_i)
|
|
|
|
# Stack outputs along sequence dimension
|
|
y = mx.stack(outputs, axis=1) # (batch, seqlen, d_model)
|
|
|
|
# Update cache
|
|
cache[0] = conv_state
|
|
cache[1] = ssm_state
|
|
|
|
return y
|
|
|
|
|
|
class ResidualBlock(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.residual_in_fp32 = args.residual_in_fp32
|
|
self.mixer = Mamba2Block(args)
|
|
self.norm = nn.RMSNorm(args.hidden_size)
|
|
|
|
def __call__(self, x: mx.array, cache):
|
|
if self.residual_in_fp32:
|
|
x = x.astype(mx.float32)
|
|
normed = self.norm(x)
|
|
output = self.mixer(normed, cache)
|
|
return output + x
|
|
|
|
|
|
class Mamba2(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.args = args
|
|
self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
|
|
self.layers = [ResidualBlock(args) for _ in range(args.num_hidden_layers)]
|
|
self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
|
|
|
def __call__(self, x: mx.array, cache):
|
|
x = self.embeddings(x)
|
|
if cache is None:
|
|
cache = [None] * len(self.layers)
|
|
|
|
hidden = x
|
|
for layer, c in zip(self.layers, cache):
|
|
hidden = layer(hidden, c)
|
|
return self.norm_f(hidden)
|
|
|
|
|
|
class Model(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.args = args
|
|
self.model_type = args.model_type
|
|
self.backbone = Mamba2(args)
|
|
|
|
if not args.tie_word_embeddings:
|
|
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
|
|
|
def __call__(self, inputs: mx.array, cache=None):
|
|
hidden = self.backbone(inputs, cache)
|
|
|
|
if self.args.tie_word_embeddings:
|
|
logits = self.backbone.embeddings.as_linear(hidden)
|
|
else:
|
|
logits = self.lm_head(hidden)
|
|
|
|
return logits
|
|
|
|
def make_cache(self):
|
|
return [MambaCache() for _ in range(len(self.layers))]
|
|
|
|
@property
|
|
def layers(self):
|
|
return self.backbone.layers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
########################################################
|
|
|
|
|
|
|
|
|
|
|
|
import math
|
|
from dataclasses import dataclass, field
|
|
from typing import Tuple, Union
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
|
|
from .base import BaseModelArgs
|
|
from .cache import MambaCache
|
|
|
|
@dataclass
|
|
class ModelArgs(BaseModelArgs):
|
|
model_type: str
|
|
num_heads: int
|
|
head_dim: int
|
|
vocab_size: int
|
|
hidden_size: int
|
|
state_size: int
|
|
num_hidden_layers: int
|
|
layer_norm_epsilon: float
|
|
expand: int
|
|
conv_kernel: int
|
|
n_groups: int
|
|
use_bias: bool
|
|
use_conv_bias: bool
|
|
initializer_range: float
|
|
residual_in_fp32: bool
|
|
chunk_size: int
|
|
tie_word_embeddings: bool
|
|
time_step_limit: Tuple[float, float]
|
|
time_step_rank: Union[int, str]
|
|
time_step_min: float
|
|
time_step_max: float
|
|
time_step_floor: float
|
|
norm_before_gate: bool = True
|
|
|
|
def __post_init__(self):
|
|
if not hasattr(self, "intermediate_size"):
|
|
self.intermediate_size = int(self.expand * self.hidden_size)
|
|
if not hasattr(self, "head_dim"):
|
|
self.head_dim = self.hidden_size // self.num_heads
|
|
if self.time_step_rank == "auto":
|
|
self.time_step_rank = math.ceil(self.hidden_size / 16)
|
|
|
|
|
|
def segsum(x):
|
|
"""Stable segment sum calculation.
|
|
|
|
`exp(segsum(A))` produces a 1-semiseparable matrix, which is equivalent to a scalar SSM.
|
|
"""
|
|
T = x.shape[-1]
|
|
x = mx.expand_dims(x, -1)
|
|
x = mx.repeat(x, T, axis=-1)
|
|
mask = mx.tril(mx.ones((T, T), dtype=mx.bool_), k=-1)
|
|
x = mx.where(mask, x, 0)
|
|
x_segsum = mx.cumsum(x, axis=-2)
|
|
mask = mx.tril(mx.ones((T, T), dtype=mx.bool_), k=0)
|
|
x_segsum = mx.where(mask, x_segsum, -mx.inf)
|
|
return x_segsum
|
|
|
|
def ssd(x, A, B, C, chunk_size, initial_states=None):
|
|
"""Structured State Space Duality (SSD) - the core of Mamba-2
|
|
|
|
Arguments
|
|
x: (batch, seqlen, n_heads, d_head)
|
|
A: (batch, seqlen, n_heads)
|
|
B: (batch, seqlen, n_heads, d_state)
|
|
C: (batch, seqlen, n_heads, d_state)
|
|
|
|
Return
|
|
y: (batch, seqlen, n_heads, d_head)
|
|
final_state: final state for inference
|
|
"""
|
|
assert x.shape[1] % chunk_size == 0
|
|
|
|
# Rearrange into chunks
|
|
def rearrange_to_chunks(m):
|
|
shape = list(m.shape)
|
|
shape[1:2] = [shape[1] // chunk_size, chunk_size]
|
|
return m.reshape(shape)
|
|
|
|
x_chunked = rearrange_to_chunks(x)
|
|
A_chunked = rearrange_to_chunks(A)
|
|
B_chunked = rearrange_to_chunks(B)
|
|
C_chunked = rearrange_to_chunks(C)
|
|
|
|
# Transpose A for easier cumsum
|
|
A_chunked = mx.transpose(A_chunked, (0, 3, 1, 2)) # b c l h -> b h c l
|
|
A_cumsum = mx.cumsum(A_chunked, axis=-1)
|
|
|
|
# 1. Compute the output for each intra-chunk (diagonal blocks)
|
|
L = mx.exp(segsum(A_chunked))
|
|
Y_diag = mx.einsum("bclhn,bcshn,bhcls,bcshp->bclhp", C_chunked, B_chunked, L, x_chunked)
|
|
|
|
# 2. Compute the state for each intra-chunk
|
|
decay_states = mx.exp(A_cumsum[:, :, :, -1:] - A_cumsum)
|
|
states = mx.einsum("bclhn,bhcl,bclhp->bchpn", B_chunked, decay_states, x_chunked)
|
|
|
|
# 3. Compute the inter-chunk SSM recurrence
|
|
if initial_states is None:
|
|
initial_states = mx.zeros_like(states[:, :1])
|
|
states = mx.concatenate([initial_states, states], axis=1)
|
|
|
|
A_cumsum_last = A_cumsum[:, :, :, -1]
|
|
A_cumsum_padded = mx.pad(A_cumsum_last, [(0, 0), (0, 0), (1, 0)])
|
|
decay_chunk = mx.exp(segsum(A_cumsum_padded))
|
|
new_states = mx.einsum("bhzc,bchpn->bzhpn", decay_chunk, states)
|
|
states, final_state = new_states[:, :-1], new_states[:, -1]
|
|
|
|
# 4. Compute state -> output conversion per chunk
|
|
state_decay_out = mx.exp(A_cumsum)
|
|
Y_off = mx.einsum("bclhn,bchpn,bhcl->bclhp", C_chunked, states, state_decay_out)
|
|
|
|
# Add output of intra-chunk and inter-chunk terms
|
|
Y_combined = Y_diag + Y_off
|
|
|
|
# Reshape back to original sequence shape
|
|
batch, chunks, chunk_len, heads, head_dim = Y_combined.shape
|
|
Y = Y_combined.reshape(batch, chunks * chunk_len, heads, head_dim)
|
|
|
|
return Y, final_state
|
|
|
|
def silu(x):
|
|
"""Applies the Sigmoid Linear Unit (SiLU), element-wise."""
|
|
return x * mx.sigmoid(x)
|
|
|
|
|
|
class Mamba2Block(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.args = args
|
|
self.d_model = args.hidden_size
|
|
self.d_state = args.state_size
|
|
self.d_conv = args.conv_kernel
|
|
self.expand = args.expand
|
|
self.d_inner = int(self.expand * self.d_model)
|
|
self.n_groups = args.n_groups
|
|
self.n_heads = args.num_heads
|
|
self.d_head = self.d_inner // self.n_heads
|
|
self.chunk_size = args.chunk_size
|
|
|
|
d_in_proj = 2 * self.d_inner + 2 * self.n_groups * self.d_state + self.n_heads
|
|
self.in_proj = nn.Linear(self.d_model, d_in_proj, bias=args.use_bias)
|
|
|
|
self.dt_bias = mx.random.normal((self.n_heads,)) * args.initializer_range
|
|
self.A_log = mx.random.normal((self.n_heads,)) * args.initializer_range
|
|
self.D = mx.random.normal((self.n_heads,)) * args.initializer_range
|
|
|
|
# Use standard Conv1d with groups for depthwise convolution
|
|
conv_dim = self.d_inner + 2 * self.n_groups * self.d_state
|
|
self.conv1d = nn.Conv1d(
|
|
in_channels=conv_dim,
|
|
out_channels=conv_dim,
|
|
kernel_size=self.d_conv,
|
|
groups=conv_dim,
|
|
padding=self.d_conv-1,
|
|
bias=args.use_conv_bias
|
|
)
|
|
|
|
self.norm = nn.RMSNorm(self.d_inner, eps=args.layer_norm_epsilon)
|
|
self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=args.use_bias)
|
|
|
|
def __call__(self, u, cache=None):
|
|
"""
|
|
Arguments
|
|
u: (batch, seqlen, d_model) input
|
|
cache: Optional tuple of (conv_state, ssm_state) for inference
|
|
|
|
Return (y, cache)
|
|
y: (batch, seqlen, d_model) output
|
|
cache: updated tuple of (conv_state, ssm_state) for inference
|
|
"""
|
|
if cache is not None:
|
|
return self.step(u, cache)
|
|
|
|
# Initialize cache if needed
|
|
if cache is None:
|
|
cache = [None, None] # Initialize with None values
|
|
|
|
# Compute projections
|
|
zxbcdt = self.in_proj(u)
|
|
|
|
# Split projections
|
|
d_inner = self.d_inner
|
|
d_state = self.n_groups * self.d_state
|
|
|
|
z, xBC, dt = mx.split(
|
|
zxbcdt,
|
|
[d_inner, d_inner + 2 * d_state],
|
|
axis=-1
|
|
)
|
|
|
|
# Process dt with softplus
|
|
dt = mx.softplus(dt + self.dt_bias) # (batch, seqlen, n_heads)
|
|
|
|
# Apply convolution to xBC
|
|
xBC_transposed = mx.transpose(xBC, (0, 2, 1)) # (batch, d, seqlen)
|
|
xBC_conv = self.conv1d(xBC_transposed)
|
|
xBC_conv = mx.transpose(xBC_conv, (0, 2, 1)) # (batch, seqlen, d)
|
|
xBC = silu(xBC_conv[:, :u.shape[1], :]) # Ensure we only keep seqlen elements
|
|
|
|
# Split xBC into x, B, C
|
|
x, B, C = mx.split(
|
|
xBC,
|
|
[d_inner, d_inner + d_state],
|
|
axis=-1
|
|
)
|
|
|
|
# Reshape x for heads
|
|
batch, seqlen = x.shape[0], x.shape[1]
|
|
x_reshaped = x.reshape(batch, seqlen, self.n_heads, self.d_head)
|
|
|
|
# Reshape B and C for SSM
|
|
B = B.reshape(batch, seqlen, 1, d_state)
|
|
C = C.reshape(batch, seqlen, 1, d_state)
|
|
|
|
# Apply SSM with SSD algorithm
|
|
A = -mx.exp(self.A_log) # (n_heads,)
|
|
A_dt = A * dt # (batch, seqlen, n_heads)
|
|
|
|
y, ssm_state = ssd(
|
|
x_reshaped * mx.expand_dims(dt, -1), # Scale x by dt
|
|
A_dt,
|
|
B,
|
|
C,
|
|
self.chunk_size
|
|
)
|
|
|
|
# Apply D and reshape
|
|
y = y + x_reshaped * mx.reshape(self.D, (1, 1, self.n_heads, 1))
|
|
y = y.reshape(batch, seqlen, d_inner)
|
|
|
|
# Apply norm and gating
|
|
y = self.norm(y, z)
|
|
|
|
# Final projection
|
|
y = self.out_proj(y)
|
|
|
|
# Create cache for inference
|
|
if seqlen == 1 and cache is not None:
|
|
conv_state = mx.zeros((batch, d_inner + 2 * d_state, self.d_conv))
|
|
conv_state = mx.update_slice(conv_state, xBC.reshape(batch, -1, 1), (0, 0, self.d_conv - 1))
|
|
cache[0] = conv_state
|
|
cache[1] = ssm_state
|
|
|
|
return y
|
|
|
|
def step(self, u, cache):
|
|
"""Take an inference step for the current input and cache
|
|
|
|
Arguments
|
|
u: (batch, seqlen, d_model) - can be multiple tokens
|
|
cache: tuple of (conv_state, ssm_state)
|
|
|
|
Return (y, cache)
|
|
y: (batch, seqlen, d_model)
|
|
cache: updated cache object
|
|
"""
|
|
batch, seqlen = u.shape[0], u.shape[1]
|
|
|
|
# Initialize cache if it's None
|
|
if cache[0] is None or cache[1] is None:
|
|
d_state = self.n_groups * self.d_state
|
|
conv_dim = self.d_inner + 2 * d_state
|
|
conv_state = mx.zeros((batch, conv_dim, self.d_conv))
|
|
|
|
# Fix: use correct state size per head
|
|
state_per_head = d_state // self.n_heads
|
|
ssm_state = mx.zeros((batch, self.n_heads, self.d_head, state_per_head))
|
|
else:
|
|
conv_state, ssm_state = cache[0], cache[1]
|
|
|
|
# Project input
|
|
zxbcdt = self.in_proj(u) # (batch, seqlen, d_in_proj)
|
|
|
|
# Split projections
|
|
d_inner = self.d_inner
|
|
d_state = self.n_groups * self.d_state
|
|
|
|
z, xBC, dt = mx.split(
|
|
zxbcdt,
|
|
[d_inner, d_inner + 2 * d_state],
|
|
axis=-1
|
|
)
|
|
|
|
# Process dt with softplus once for all tokens
|
|
dt_heads = dt.reshape(batch, seqlen, -1)[:, :, :self.n_heads]
|
|
dt_heads = nn.softplus(dt_heads + self.dt_bias.reshape(1, 1, -1))
|
|
|
|
# Pre-compute dA for all tokens
|
|
A = -mx.exp(self.A_log) # (n_heads,)
|
|
dA = mx.exp(dt_heads * A.reshape(1, 1, -1)) # (batch, seqlen, n_heads)
|
|
|
|
# Get convolution weights
|
|
weight = self.conv1d.weight # shape: (out_channels, 1, kernel_size)
|
|
bias = self.conv1d.bias if self.args.use_conv_bias else None
|
|
|
|
# Process each token through the convolution sequentially
|
|
outputs = []
|
|
for i in range(seqlen):
|
|
# Get current token's input
|
|
xBC_i = xBC[:, i] # (batch, d_inner + 2*d_state)
|
|
|
|
# Update convolution state
|
|
conv_state = mx.roll(conv_state, shift=-1, axis=-1)
|
|
|
|
# Update the last column of conv_state
|
|
conv_state = mx.slice_update(
|
|
conv_state,
|
|
xBC_i.reshape(batch, -1, 1),
|
|
mx.array([0, 0, self.d_conv - 1]),
|
|
axes=(0, 1, 2)
|
|
)
|
|
|
|
# Apply convolution step - manually handle the depthwise conv
|
|
# For a depthwise conv, we need to process each channel separately
|
|
# conv_state shape: (batch, channels, kernel_size)
|
|
# weight shape: (channels, 1, kernel_size) for depthwise conv
|
|
|
|
# Reshape weight to match conv_state for element-wise multiplication
|
|
# and then sum along the kernel dimension
|
|
weight_reshaped = weight.reshape(conv_state.shape[1], self.d_conv)
|
|
xBC_conv = mx.sum(conv_state * weight_reshaped.reshape(1, -1, self.d_conv), axis=-1)
|
|
|
|
if bias is not None:
|
|
xBC_conv = xBC_conv + bias
|
|
|
|
xBC_conv = silu(xBC_conv)
|
|
|
|
# Split xBC
|
|
x_i, BC_rest = mx.split(xBC_conv, [d_inner], axis=-1)
|
|
B_i, C_i = mx.split(BC_rest, [d_state], axis=-1)
|
|
|
|
# Reshape x for heads
|
|
x_i = x_i.reshape(batch, self.n_heads, self.d_head)
|
|
|
|
# Reshape B and C for SSM
|
|
state_per_head = d_state // self.n_heads
|
|
B_i_reshaped = B_i.reshape(batch, self.n_heads, state_per_head)
|
|
C_i_reshaped = C_i.reshape(batch, self.n_heads, state_per_head)
|
|
|
|
# Get current token's dt and dA
|
|
dt_i = dt_heads[:, i] # (batch, n_heads)
|
|
dA_i = dA[:, i] # (batch, n_heads)
|
|
|
|
# Calculate dBx
|
|
dBx = mx.einsum("bhn,bhp->bhpn", B_i_reshaped, x_i * mx.expand_dims(dt_i, -1))
|
|
|
|
# Update SSM state
|
|
ssm_state = ssm_state * mx.reshape(dA_i, (batch, self.n_heads, 1, 1)) + dBx
|
|
|
|
# Calculate output with the correctly shaped C
|
|
y_i = mx.einsum("bhpn,bhn->bhp", ssm_state, C_i_reshaped)
|
|
|
|
# Apply D and reshape
|
|
y_i = y_i + x_i * self.D.reshape(1, self.n_heads, 1)
|
|
|
|
# Reshape y
|
|
y_i = y_i.reshape(batch, d_inner)
|
|
|
|
# Apply norm and gating
|
|
y_i = self.norm(y_i) * nn.sigmoid(z[:, i])
|
|
|
|
# Final projection
|
|
y_i = self.out_proj(y_i)
|
|
|
|
outputs.append(y_i)
|
|
|
|
# Stack outputs along sequence dimension
|
|
y = mx.stack(outputs, axis=1)
|
|
|
|
# Update cache
|
|
cache[0] = conv_state
|
|
cache[1] = ssm_state
|
|
|
|
return y
|
|
|
|
|
|
class ResidualBlock(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.residual_in_fp32 = args.residual_in_fp32
|
|
self.mixer = Mamba2Block(args)
|
|
self.norm = nn.RMSNorm(args.hidden_size)
|
|
|
|
def __call__(self, x: mx.array, cache):
|
|
if self.residual_in_fp32:
|
|
x = x.astype(mx.float32)
|
|
normed = self.norm(x)
|
|
output = self.mixer(normed, cache)
|
|
return output + x
|
|
|
|
|
|
class Mamba2(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.args = args
|
|
self.embeddings = nn.Embedding(args.vocab_size, args.hidden_size)
|
|
self.layers = [ResidualBlock(args) for _ in range(args.num_hidden_layers)]
|
|
self.norm_f = nn.RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
|
|
|
def __call__(self, x: mx.array, cache):
|
|
x = self.embeddings(x)
|
|
if cache is None:
|
|
cache = [None] * len(self.layers)
|
|
|
|
hidden = x
|
|
for layer, c in zip(self.layers, cache):
|
|
hidden = layer(hidden, c)
|
|
return self.norm_f(hidden)
|
|
|
|
|
|
class Model(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.args = args
|
|
self.model_type = args.model_type
|
|
self.backbone = Mamba2(args)
|
|
|
|
if not args.tie_word_embeddings:
|
|
self.lm_head = nn.Linear(args.hidden_size, args.vocab_size, bias=False)
|
|
|
|
def __call__(self, inputs: mx.array, cache=None):
|
|
hidden = self.backbone(inputs, cache)
|
|
|
|
if self.args.tie_word_embeddings:
|
|
logits = self.backbone.embeddings.as_linear(hidden)
|
|
else:
|
|
logits = self.lm_head(hidden)
|
|
|
|
return logits
|
|
|
|
def make_cache(self):
|
|
return [MambaCache() for _ in range(len(self.layers))]
|
|
|
|
@property
|
|
def layers(self):
|
|
return self.backbone.layers |