mlx-examples/llms/mlx_lm/models/olmo.py
2024-02-06 05:27:05 -08:00

178 lines
5.0 KiB
Python

from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import mlx.core as mx
import mlx.nn as nn
from .base import BaseModelArgs
try:
import hf_olmo
except ImportError:
print("To run olmo install ai2-olmo: pip install ai2-olmo")
exit(1)
@dataclass
class ModelArgs(BaseModelArgs):
d_model: int
n_layers: int
mlp_hidden_size: int
n_heads: int
vocab_size: int
embedding_size: int
rope_theta: float = 10000
rope_traditional: bool = False
model_type: str = None
mlp_ratio: int = 4
weight_tying: bool = False
def __post_init__(self):
self.mlp_hidden_size = (
self.mlp_hidden_size
if self.mlp_hidden_size is not None
else self.mlp_ratio * self.d_model
)
class LayerNorm(nn.LayerNorm):
def __call__(self, x: mx.array) -> mx.array:
return super().__call__(x.astype(mx.float32)).astype(x.dtype)
class TransformerBlock(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.n_heads = args.n_heads
dim = args.d_model
self.ff_proj = nn.Linear(dim, args.mlp_hidden_size, bias=False)
self.ff_out = nn.Linear(args.mlp_hidden_size // 2, dim, bias=False)
self.att_norm = LayerNorm(dim, affine=False)
self.ff_norm = LayerNorm(dim, affine=False)
head_dim = dim // self.n_heads
self.scale = head_dim**-0.5
self.att_proj = nn.Linear(dim, 3 * dim, bias=False)
self.attn_out = nn.Linear(dim, dim, bias=False)
self.rope = nn.RoPE(
head_dim,
traditional=args.rope_traditional,
base=args.rope_theta,
)
self.args = args
def attend(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
B, L, D = x.shape
queries, keys, values = mx.split(self.att_proj(x), 3, axis=-1)
# Prepare the queries, keys and values for the attention computation
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
if cache is not None:
key_cache, value_cache = cache
queries = self.rope(queries, offset=key_cache.shape[2])
keys = self.rope(keys, offset=key_cache.shape[2])
keys = mx.concatenate([key_cache, keys], axis=2)
values = mx.concatenate([value_cache, values], axis=2)
else:
queries = self.rope(queries)
keys = self.rope(keys)
scores = (queries * self.scale) @ keys.transpose(0, 1, 3, 2)
if mask is not None:
scores += mask
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype)
output = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.attn_out(output), (keys, values)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
r, cache = self.attend(self.att_norm(x), mask, cache)
h = x + r
x1, x2 = mx.split(self.ff_proj(self.ff_norm(h)), 2, axis=-1)
out = h + self.ff_out(nn.silu(x2) * x1)
return out, cache
class Transformer(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.n_layers = args.n_layers
self.weight_tying = args.weight_tying
self.wte = nn.Embedding(args.embedding_size, args.d_model)
self.blocks = [TransformerBlock(args=args) for _ in range(args.n_layers)]
if not self.weight_tying:
self.ff_out = nn.Linear(args.d_model, args.embedding_size, bias=False)
self.norm = LayerNorm(args.d_model, affine=False)
def __call__(
self,
inputs: mx.array,
cache=None,
):
h = self.wte(inputs)
mask = None
if h.shape[1] > 1:
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
mask = mask.astype(h.dtype)
if cache is None:
cache = [None] * len(self.blocks)
for e, block in enumerate(self.blocks):
h, cache[e] = block(h, mask, cache[e])
h = self.norm(h)
if self.weight_tying:
return h @ self.wte.weight.T, cache
return self.ff_out(h), cache
class OlmoModel(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.transformer = Transformer(args)
def __call__(
self,
inputs: mx.array,
cache=None,
):
return self.transformer(inputs, cache)
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.model = OlmoModel(args)
def __call__(
self,
inputs: mx.array,
cache=None,
):
return self.model(inputs, cache)