mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 17:31:18 +08:00
126 lines
3.5 KiB
Python
126 lines
3.5 KiB
Python
# Copyright © 2023 Apple Inc.
|
|
|
|
import argparse
|
|
import copy
|
|
import json
|
|
import shutil
|
|
from pathlib import Path
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
import numpy as np
|
|
import torch
|
|
from mlx.utils import tree_flatten, tree_map, tree_unflatten
|
|
|
|
from lora import Model, ModelArgs
|
|
|
|
|
|
def quantize(weights, config, args):
|
|
quantized_config = copy.deepcopy(config)
|
|
|
|
# Load the model:
|
|
model = Model(ModelArgs(**config))
|
|
weights = tree_map(mx.array, weights)
|
|
model.update(tree_unflatten(list(weights.items())))
|
|
|
|
# Quantize the model:
|
|
nn.QuantizedLinear.quantize_module(
|
|
model,
|
|
args.q_group_size,
|
|
args.q_bits,
|
|
linear_class_predicate=lambda m: isinstance(m, nn.Linear)
|
|
and m.weight.shape[0] != config["vocab_size"],
|
|
)
|
|
|
|
# Update the config:
|
|
quantized_config["quantization"] = {
|
|
"group_size": args.q_group_size,
|
|
"bits": args.q_bits,
|
|
}
|
|
quantized_weights = dict(tree_flatten(model.parameters()))
|
|
|
|
return quantized_weights, quantized_config
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(
|
|
description="Convert Mistral or Llama models to MLX.",
|
|
)
|
|
parser.add_argument(
|
|
"--torch-path",
|
|
type=str,
|
|
default="mistral-7B-v0.1/",
|
|
help="Path to the torch model directory",
|
|
)
|
|
parser.add_argument(
|
|
"--mlx-path",
|
|
type=str,
|
|
default="mlx_model/",
|
|
help="The directory to store the mlx model",
|
|
)
|
|
parser.add_argument(
|
|
"-q",
|
|
"--quantize",
|
|
help="Generate a quantized model.",
|
|
action="store_true",
|
|
)
|
|
parser.add_argument(
|
|
"--q-group-size",
|
|
help="Group size for quantization.",
|
|
type=int,
|
|
default=64,
|
|
)
|
|
parser.add_argument(
|
|
"--q-bits",
|
|
help="Bits per weight for quantization.",
|
|
type=int,
|
|
default=4,
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
args = parser.parse_args()
|
|
|
|
torch_path = Path(args.torch_path)
|
|
mlx_path = Path(args.mlx_path)
|
|
mlx_path.mkdir(parents=True, exist_ok=True)
|
|
|
|
# Copy the tokenizer
|
|
tokenizer_path = torch_path / "tokenizer.model"
|
|
if not tokenizer_path.exists():
|
|
print(f"Make sure there is a file tokenizer.model in {args.torch-path}")
|
|
exit(0)
|
|
shutil.copyfile(
|
|
str(tokenizer_path),
|
|
str(mlx_path / "tokenizer.model"),
|
|
)
|
|
|
|
# Load the torch model weights to numpy:
|
|
weights = torch.load(str(torch_path / "consolidated.00.pth"))
|
|
for k, v in weights.items():
|
|
weights[k] = v.to(torch.float16).numpy()
|
|
|
|
# Standardize the params
|
|
with open(torch_path / "params.json", "r") as f:
|
|
config = json.loads(f.read())
|
|
unused = ["multiple_of", "sliding_window"]
|
|
for k in unused:
|
|
config.pop(k, None)
|
|
n_heads = config["n_heads"]
|
|
if "n_kv_heads" not in config:
|
|
config["n_kv_heads"] = n_heads
|
|
if "head_dim" not in config:
|
|
config["head_dim"] = config["dim"] // n_heads
|
|
if "hidden_dim" not in config:
|
|
config["hidden_dim"] = weights["layers.0.feed_forward.w1.weight"].shape[0]
|
|
if config.get("vocab_size", -1) < 0:
|
|
config["vocab_size"] = weights["output.weight"].shape[0]
|
|
|
|
if args.quantize:
|
|
print("[INFO] Quantizing")
|
|
weights, config = quantize(weights, config, args)
|
|
|
|
np.savez(str(mlx_path / "weights.npz"), **weights)
|
|
|
|
with open(mlx_path / "config.json", "w") as outfile:
|
|
json.dump(config, outfile, indent=4)
|