mlx-examples/cifar/dataset.py
2023-12-14 12:09:10 -08:00

31 lines
835 B
Python

import mlx.core as mx
from mlx.data.datasets import load_cifar10
import math
def get_cifar10(batch_size, root=None):
tr = load_cifar10(root=root)
mean = mx.array([0.485, 0.456, 0.406]).reshape((1, 1, 3))
std = mx.array([0.229, 0.224, 0.225]).reshape((1, 1, 3))
def normalize(x):
x = x.astype("float32") / 255.0
return (x - mean) / std
tr_iter = (
tr.shuffle()
.to_stream()
.image_random_h_flip("image", prob=0.5)
.pad("image", 0, 4, 4, 0.0)
.pad("image", 1, 4, 4, 0.0)
.image_random_crop("image", 32, 32)
.key_transform("image", normalize)
.batch(batch_size)
)
test = load_cifar10(root=root, train=False)
test_iter = test.to_stream().key_transform("image", normalize).batch(batch_size)
return tr_iter, test_iter