mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 17:31:18 +08:00
267 lines
8.4 KiB
Python
267 lines
8.4 KiB
Python
# Copyright © 2023 Apple Inc.
|
|
|
|
import base64
|
|
import gzip
|
|
import math
|
|
from dataclasses import dataclass
|
|
from typing import Union
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
import numpy as np
|
|
|
|
from .decoding import decode as decode_function
|
|
from .decoding import detect_language as detect_language_function
|
|
|
|
|
|
@dataclass
|
|
class ModelDimensions:
|
|
n_mels: int
|
|
n_audio_ctx: int
|
|
n_audio_state: int
|
|
n_audio_head: int
|
|
n_audio_layer: int
|
|
n_vocab: int
|
|
n_text_ctx: int
|
|
n_text_state: int
|
|
n_text_head: int
|
|
n_text_layer: int
|
|
|
|
|
|
def sinusoids(length, channels, max_timescale=10000):
|
|
"""Returns sinusoids for positional embedding"""
|
|
assert channels % 2 == 0
|
|
log_timescale_increment = math.log(max_timescale) / (channels // 2 - 1)
|
|
inv_timescales = mx.exp(-log_timescale_increment * mx.arange(channels // 2))
|
|
scaled_time = mx.arange(length)[:, None] * inv_timescales[None, :]
|
|
return mx.concatenate([mx.sin(scaled_time), mx.cos(scaled_time)], axis=1)
|
|
|
|
|
|
class MultiHeadAttention(nn.Module):
|
|
def __init__(self, n_state: int, n_head: int):
|
|
super().__init__()
|
|
self.n_head = n_head
|
|
self.query = nn.Linear(n_state, n_state)
|
|
self.key = nn.Linear(n_state, n_state, bias=False)
|
|
self.value = nn.Linear(n_state, n_state)
|
|
self.out = nn.Linear(n_state, n_state)
|
|
|
|
def __call__(
|
|
self,
|
|
x,
|
|
xa=None,
|
|
mask=None,
|
|
kv_cache=None,
|
|
):
|
|
q = self.query(x)
|
|
|
|
if xa is None:
|
|
k = self.key(x)
|
|
v = self.value(x)
|
|
if kv_cache is not None:
|
|
k = mx.concatenate([kv_cache[0], k], axis=1)
|
|
v = mx.concatenate([kv_cache[1], v], axis=1)
|
|
elif kv_cache is None:
|
|
k = self.key(xa)
|
|
v = self.value(xa)
|
|
else:
|
|
k, v = kv_cache
|
|
|
|
wv, qk = self.qkv_attention(q, k, v, mask)
|
|
return self.out(wv), (k, v), qk
|
|
|
|
def qkv_attention(self, q, k, v, mask=None):
|
|
n_batch, n_ctx, n_state = q.shape
|
|
scale = (n_state // self.n_head) ** -0.25
|
|
q = q.reshape(*q.shape[:2], self.n_head, -1).transpose(0, 2, 1, 3) * scale
|
|
k = k.reshape(*k.shape[:2], self.n_head, -1).transpose(0, 2, 3, 1) * scale
|
|
v = v.reshape(*v.shape[:2], self.n_head, -1).transpose(0, 2, 1, 3)
|
|
|
|
qk = q @ k
|
|
if mask is not None:
|
|
qk = qk + mask[:n_ctx, :n_ctx]
|
|
|
|
w = mx.softmax(qk, axis=-1, precise=True)
|
|
out = (w @ v).transpose(0, 2, 1, 3)
|
|
out = out.reshape(n_batch, n_ctx, n_state)
|
|
return out, qk
|
|
|
|
|
|
class ResidualAttentionBlock(nn.Module):
|
|
def __init__(self, n_state: int, n_head: int, cross_attention: bool = False):
|
|
super().__init__()
|
|
|
|
self.attn = MultiHeadAttention(n_state, n_head)
|
|
self.attn_ln = nn.LayerNorm(n_state)
|
|
|
|
self.cross_attn = (
|
|
MultiHeadAttention(n_state, n_head) if cross_attention else None
|
|
)
|
|
self.cross_attn_ln = nn.LayerNorm(n_state) if cross_attention else None
|
|
|
|
n_mlp = n_state * 4
|
|
self.mlp1 = nn.Linear(n_state, n_mlp)
|
|
self.mlp2 = nn.Linear(n_mlp, n_state)
|
|
self.mlp_ln = nn.LayerNorm(n_state)
|
|
|
|
def __call__(self, x, xa=None, mask=None, kv_cache=None):
|
|
kv, cross_kv = kv_cache if kv_cache else (None, None)
|
|
y, kv, _ = self.attn(self.attn_ln(x), mask=mask, kv_cache=kv)
|
|
x += y
|
|
cross_qk = None
|
|
if self.cross_attn:
|
|
y, cross_kv, cross_qk = self.cross_attn(
|
|
self.cross_attn_ln(x), xa, kv_cache=cross_kv
|
|
)
|
|
x += y
|
|
x = x + self.mlp2(nn.gelu(self.mlp1(self.mlp_ln(x))))
|
|
return x, (kv, cross_kv), cross_qk
|
|
|
|
|
|
class AudioEncoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
n_mels: int,
|
|
n_ctx: int,
|
|
n_state: int,
|
|
n_head: int,
|
|
n_layer: int,
|
|
dtype: mx.Dtype = mx.float16,
|
|
):
|
|
super().__init__()
|
|
self.conv1 = nn.Conv1d(n_mels, n_state, kernel_size=3, padding=1)
|
|
self.conv2 = nn.Conv1d(n_state, n_state, kernel_size=3, stride=2, padding=1)
|
|
self._positional_embedding = sinusoids(n_ctx, n_state).astype(dtype)
|
|
|
|
self.blocks = [ResidualAttentionBlock(n_state, n_head) for _ in range(n_layer)]
|
|
self.ln_post = nn.LayerNorm(n_state)
|
|
|
|
def __call__(self, x):
|
|
x = nn.gelu(self.conv1(x))
|
|
x = nn.gelu(self.conv2(x))
|
|
assert x.shape[1:] == self._positional_embedding.shape, "incorrect audio shape"
|
|
x = x + self._positional_embedding
|
|
|
|
for block in self.blocks:
|
|
x, _, _ = block(x)
|
|
|
|
x = self.ln_post(x)
|
|
return x
|
|
|
|
|
|
class TextDecoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
n_vocab: int,
|
|
n_ctx: int,
|
|
n_state: int,
|
|
n_head: int,
|
|
n_layer: int,
|
|
dtype: mx.Dtype = mx.float16,
|
|
):
|
|
super().__init__()
|
|
|
|
self.token_embedding = nn.Embedding(n_vocab, n_state)
|
|
self.positional_embedding = mx.zeros((n_ctx, n_state))
|
|
|
|
self.blocks = [
|
|
ResidualAttentionBlock(n_state, n_head, cross_attention=True)
|
|
for _ in range(n_layer)
|
|
]
|
|
self.ln = nn.LayerNorm(n_state)
|
|
self._mask = nn.MultiHeadAttention.create_additive_causal_mask(n_ctx).astype(
|
|
dtype
|
|
)
|
|
|
|
def __call__(self, x, xa, kv_cache=None):
|
|
"""
|
|
x : mx.array, shape = (batch_size, <= n_ctx)
|
|
the text tokens
|
|
xa : mx.array, shape = (batch_size, n_audio_ctx, n_audio_state)
|
|
the encoded audio features to be attended on
|
|
"""
|
|
offset = kv_cache[0][0][0].shape[1] if kv_cache else 0
|
|
x = (
|
|
self.token_embedding(x)
|
|
+ self.positional_embedding[offset : offset + x.shape[-1]]
|
|
)
|
|
|
|
if kv_cache is None:
|
|
kv_cache = [None] * len(self.blocks)
|
|
cross_qk = [None] * len(self.blocks)
|
|
for e, block in enumerate(self.blocks):
|
|
x, kv_cache[e], cross_qk[e] = block(
|
|
x, xa, mask=self._mask, kv_cache=kv_cache[e]
|
|
)
|
|
|
|
x = self.ln(x)
|
|
return self.token_embedding.as_linear(x), kv_cache, cross_qk
|
|
|
|
|
|
class Whisper(nn.Module):
|
|
def __init__(self, dims: ModelDimensions, dtype: mx.Dtype = mx.float16):
|
|
super().__init__()
|
|
self.dims = dims
|
|
self.encoder = AudioEncoder(
|
|
self.dims.n_mels,
|
|
self.dims.n_audio_ctx,
|
|
self.dims.n_audio_state,
|
|
self.dims.n_audio_head,
|
|
self.dims.n_audio_layer,
|
|
dtype,
|
|
)
|
|
self.decoder = TextDecoder(
|
|
self.dims.n_vocab,
|
|
self.dims.n_text_ctx,
|
|
self.dims.n_text_state,
|
|
self.dims.n_text_head,
|
|
self.dims.n_text_layer,
|
|
dtype,
|
|
)
|
|
# use the last half among the decoder layers for time alignment by default;
|
|
# to use a specific set of heads, see `set_alignment_heads()` below.
|
|
all_heads = np.zeros(
|
|
(self.dims.n_text_layer, self.dims.n_text_head), dtype=bool
|
|
)
|
|
all_heads[self.dims.n_text_layer // 2 :] = True
|
|
self.alignment_heads = mx.array(np.asarray(all_heads.nonzero()).T)
|
|
|
|
def set_alignment_heads(self, dump: Union[bytes, np.ndarray]):
|
|
if isinstance(dump, np.ndarray):
|
|
self.alignment_heads = mx.array(dump)
|
|
elif isinstance(dump, bytes):
|
|
array = np.frombuffer(
|
|
gzip.decompress(base64.b85decode(dump)), dtype=bool
|
|
).copy()
|
|
mask = array.reshape(self.dims.n_text_layer, self.dims.n_text_head)
|
|
self.alignment_heads = mx.array(np.asarray(mask.nonzero()).T)
|
|
else:
|
|
raise ValueError(
|
|
f"Invalid type for `dump`: {type(dump)}. Expected a np.ndarray or base85-encoded bytes containing"
|
|
" alignment_head information"
|
|
)
|
|
|
|
def embed_audio(self, mel):
|
|
return self.encoder(mel)
|
|
|
|
def logits(self, tokens, audio_features):
|
|
return self.decoder(tokens, audio_features)[0]
|
|
|
|
def forward_with_cross_qk(self, mel, tokens):
|
|
logits, _, cross_qk = self.decoder(tokens, self.encoder(mel))
|
|
return logits, cross_qk
|
|
|
|
def __call__(self, mel, tokens):
|
|
return self.decoder(tokens, self.encoder(mel))[0]
|
|
|
|
@property
|
|
def is_multilingual(self):
|
|
return self.dims.n_vocab >= 51865
|
|
|
|
@property
|
|
def num_languages(self):
|
|
return self.dims.n_vocab - 51765 - int(self.is_multilingual)
|
|
|
|
detect_language = detect_language_function
|
|
decode = decode_function
|