mlx-examples/llava/language.py
Awni Hannun b8a348c1b8
Switch to fast RMS/LN Norm (#603)
* use nn.RMSNorm, use sdpa, cleanup

* bump mlx versions

* minor update

* use fast layer norm

* version bump

* update requirement for whisper

* update requirement for gguf
2024-03-23 07:13:51 -07:00

213 lines
6.9 KiB
Python

# Copyright © 2024 Apple Inc.
import inspect
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import mlx.core as mx
import mlx.nn as nn
@dataclass
class TextConfig:
model_type: str
hidden_size: int = 4096
num_hidden_layers: int = 32
intermediate_size: int = 11008
num_attention_heads: int = 32
rms_norm_eps: float = 1e-6
vocab_size: int = 32000
num_key_value_heads: int = None
rope_theta: float = 10000
rope_traditional: bool = False
rope_scaling: Optional[Dict[str, Union[float, str]]] = None
@classmethod
def from_dict(cls, params):
return cls(
**{
k: v
for k, v in params.items()
if k in inspect.signature(cls).parameters
}
)
def __post_init__(self):
if self.num_key_value_heads is None:
self.num_key_value_heads = self.num_attention_heads
if self.rope_scaling:
required_keys = {"factor", "type"}
if not all(key in self.rope_scaling for key in required_keys):
raise ValueError(f"rope_scaling must contain keys {required_keys}")
if self.rope_scaling["type"] != "linear":
raise ValueError("rope_scaling 'type' currently only supports 'linear'")
class Attention(nn.Module):
def __init__(self, config: TextConfig):
super().__init__()
dim = config.hidden_size
self.n_heads = n_heads = config.num_attention_heads
self.n_kv_heads = n_kv_heads = config.num_key_value_heads
self.repeats = n_heads // n_kv_heads
head_dim = config.hidden_size // n_heads
self.scale = head_dim**-0.5
self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
rope_scale = (
1 / config.rope_scaling["factor"]
if config.rope_scaling is not None
and config.rope_scaling["type"] == "linear"
else 1
)
self.rope = nn.RoPE(
head_dim,
traditional=config.rope_traditional,
base=config.rope_theta,
scale=rope_scale,
)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
B, L, D = x.shape
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
# Prepare the queries, keys and values for the attention computation
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
if cache is not None:
key_cache, value_cache = cache
queries = self.rope(queries, offset=key_cache.shape[2])
keys = self.rope(keys, offset=key_cache.shape[2])
keys = mx.concatenate([key_cache, keys], axis=2)
values = mx.concatenate([value_cache, values], axis=2)
else:
queries = self.rope(queries)
keys = self.rope(keys)
output = mx.fast.scaled_dot_product_attention(
queries, keys, values, scale=self.scale, mask=mask
)
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.o_proj(output), (keys, values)
class MLP(nn.Module):
def __init__(self, dim, hidden_dim):
super().__init__()
self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
def __call__(self, x) -> mx.array:
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
class TransformerBlock(nn.Module):
def __init__(self, config: TextConfig):
super().__init__()
self.num_attention_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.self_attn = Attention(config)
self.mlp = MLP(config.hidden_size, config.intermediate_size)
self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = nn.RMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
self.config = config
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
r, cache = self.self_attn(self.input_layernorm(x), mask, cache)
h = x + r
r = self.mlp(self.post_attention_layernorm(h))
out = h + r
return out, cache
class Llama(nn.Module):
def __init__(self, config: TextConfig):
super().__init__()
self.config = config
self.vocab_size = config.vocab_size
self.num_hidden_layers = config.num_hidden_layers
assert self.vocab_size > 0
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = [
TransformerBlock(config=config) for _ in range(config.num_hidden_layers)
]
self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def __call__(
self,
inputs: mx.array,
cache=None,
inputs_embeds=None,
):
# for passing merged input embeddings
if inputs_embeds is None:
h = self.embed_tokens(inputs)
else:
h = inputs_embeds
mask = None
if h.shape[1] > 1:
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
mask = mask.astype(h.dtype)
if cache is None:
cache = [None] * len(self.layers)
for e, layer in enumerate(self.layers):
h, cache[e] = layer(h, mask, cache[e])
return self.norm(h), cache
class LanguageModel(nn.Module):
def __init__(self, config: TextConfig):
super().__init__()
self.model_type = config.model_type
if self.model_type != "llama":
raise ValueError(
f"Model type {self.model_type} not supported. Currently only 'llama' is supported"
)
self.model = Llama(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
def __call__(
self,
inputs: mx.array,
cache=None,
inputs_embeds=None,
):
out, cache = self.model(inputs, cache, inputs_embeds)
return self.lm_head(out), cache
@staticmethod
def sanitize(weights):
# Remove unused precomputed rotary freqs
return {
k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
}