mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00

* use nn.RMSNorm, use sdpa, cleanup * bump mlx versions * minor update * use fast layer norm * version bump * update requirement for whisper * update requirement for gguf
178 lines
5.8 KiB
Python
178 lines
5.8 KiB
Python
import math
|
|
from dataclasses import dataclass
|
|
from typing import Tuple
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
|
|
from .base import BaseModelArgs
|
|
|
|
|
|
@dataclass
|
|
class ModelArgs(BaseModelArgs):
|
|
model_type: str = "phi"
|
|
max_position_embeddings: int = 2048
|
|
vocab_size: int = 51200
|
|
hidden_size: int = 2560
|
|
num_attention_heads: int = 32
|
|
num_hidden_layers: int = 32
|
|
num_key_value_heads: int = 32
|
|
partial_rotary_factor: float = 0.4
|
|
intermediate_size: int = 10240
|
|
layer_norm_eps: float = 1e-5
|
|
rope_theta: float = 10000.0
|
|
|
|
def __post_init__(self):
|
|
if self.num_key_value_heads is None:
|
|
self.num_key_value_heads = self.num_attention_heads
|
|
|
|
|
|
class PhiAttention(nn.Module):
|
|
def __init__(self, config: ModelArgs):
|
|
super().__init__()
|
|
|
|
self.hidden_size = config.hidden_size
|
|
self.num_heads = config.num_attention_heads
|
|
self.head_dim = self.hidden_size // self.num_heads
|
|
self.num_key_value_heads = config.num_key_value_heads
|
|
self.repeats = self.num_heads // self.num_key_value_heads
|
|
self.rope_theta = config.rope_theta
|
|
self.partial_rotary_factor = config.partial_rotary_factor
|
|
|
|
if (self.head_dim * self.num_heads) != self.hidden_size:
|
|
raise ValueError(
|
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
|
f" and `num_heads`: {self.num_heads})."
|
|
)
|
|
|
|
self.q_proj = nn.Linear(
|
|
self.hidden_size, self.num_heads * self.head_dim, bias=True
|
|
)
|
|
self.k_proj = nn.Linear(
|
|
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True
|
|
)
|
|
self.v_proj = nn.Linear(
|
|
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True
|
|
)
|
|
self.dense = nn.Linear(
|
|
self.num_heads * self.head_dim, self.hidden_size, bias=True
|
|
)
|
|
|
|
self.rope = nn.RoPE(
|
|
int(self.partial_rotary_factor * self.head_dim),
|
|
traditional=False,
|
|
base=self.rope_theta,
|
|
)
|
|
|
|
def __call__(self, x, mask=None, cache=None):
|
|
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
|
|
|
|
# Extract some shapes
|
|
B, L, D = queries.shape
|
|
n_heads, n_kv_heads = self.num_heads, self.num_key_value_heads
|
|
|
|
# Prepare the queries, keys and values for the attention computation
|
|
queries = queries.reshape(
|
|
B,
|
|
L,
|
|
n_kv_heads,
|
|
n_heads // n_kv_heads,
|
|
-1,
|
|
).moveaxis(1, 3)
|
|
keys = keys.reshape(B, L, n_kv_heads, 1, -1).moveaxis(1, 3)
|
|
values = values.reshape(B, L, n_kv_heads, 1, -1).moveaxis(1, 3)
|
|
|
|
# Add RoPE to the queries and keys and combine them with the cache
|
|
if cache is not None:
|
|
key_cache, value_cache = cache
|
|
queries = self.rope(queries, offset=key_cache.shape[-2])
|
|
keys = self.rope(keys, offset=key_cache.shape[-2])
|
|
keys = mx.concatenate([key_cache, keys], axis=-2)
|
|
values = mx.concatenate([value_cache, values], axis=-2)
|
|
else:
|
|
queries = self.rope(queries)
|
|
keys = self.rope(keys)
|
|
|
|
queries = queries.astype(mx.float32)
|
|
|
|
# Finally perform the attention computation
|
|
scale = math.sqrt(1 / queries.shape[-1])
|
|
scores = (queries * scale) @ keys.swapaxes(-1, -2)
|
|
if mask is not None:
|
|
scores = scores + mask
|
|
scores = mx.softmax(scores, axis=-1).astype(values.dtype)
|
|
output = (scores @ values).moveaxis(3, 1).reshape(B, L, -1)
|
|
|
|
return self.dense(output), (keys, values)
|
|
|
|
|
|
class PhiMLP(nn.Module):
|
|
def __init__(self, config: ModelArgs):
|
|
super().__init__()
|
|
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
|
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
|
self.act = nn.GELU(approx="precise")
|
|
|
|
def __call__(self, x) -> mx.array:
|
|
return self.fc2(self.act(self.fc1(x)))
|
|
|
|
|
|
class PhiDecoderLayer(nn.Module):
|
|
def __init__(self, config: ModelArgs):
|
|
super().__init__()
|
|
self.self_attn = PhiAttention(config=config)
|
|
self.input_layernorm = nn.LayerNorm(
|
|
config.hidden_size, eps=config.layer_norm_eps
|
|
)
|
|
self.mlp = PhiMLP(config)
|
|
|
|
def __call__(self, x, mask, cache):
|
|
h = self.input_layernorm(x)
|
|
attn_h, cache = self.self_attn(h, mask, cache)
|
|
ff_h = self.mlp(h)
|
|
return attn_h + ff_h + x, cache
|
|
|
|
|
|
class PhiModel(nn.Module):
|
|
def __init__(self, config: ModelArgs):
|
|
super().__init__()
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
|
|
self.layers = [PhiDecoderLayer(config) for i in range(config.num_hidden_layers)]
|
|
self.final_layernorm = nn.LayerNorm(
|
|
config.hidden_size, eps=config.layer_norm_eps
|
|
)
|
|
|
|
def __call__(self, x, cache):
|
|
x = self.embed_tokens(x)
|
|
if cache is None:
|
|
cache = [None] * len(self.layers)
|
|
|
|
mask = None
|
|
if x.shape[1] > 1:
|
|
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
|
|
mask = mask.astype(x.dtype)
|
|
|
|
for e, layer in enumerate(self.layers):
|
|
x, cache[e] = layer(x, mask, cache[e])
|
|
return self.final_layernorm(x), cache
|
|
|
|
|
|
class Model(nn.Module):
|
|
def __init__(self, config: ModelArgs):
|
|
super().__init__()
|
|
self.model_type = config.model_type
|
|
self.model = PhiModel(config)
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=True)
|
|
|
|
def __call__(
|
|
self,
|
|
x: mx.array,
|
|
cache: mx.array = None,
|
|
) -> Tuple[mx.array, mx.array]:
|
|
y, cache = self.model(x, cache)
|
|
return self.lm_head(y), cache
|
|
|
|
@property
|
|
def layers(self):
|
|
return self.model.layers
|