mlx-examples/llms/tests/test_sample_utils.py
Anchen fbed720d6f
chore(mlx-lm): fix the top_p implementation. (#602)
* chore(mlx-lm): clean up the top p imp

* chore: clean up

* chore: add test

* chore: address comments

* chore: clean up docs string

* chore: clean up test
2024-03-21 12:18:23 -07:00

38 lines
1.3 KiB
Python

import unittest
from unittest.mock import patch
import mlx.core as mx
from mlx_lm.sample_utils import top_p_sampling
class TestLora(unittest.TestCase):
@patch("mlx.core.random.categorical")
def test_top_p_sampling(self, mock_categorical):
logits = mx.array([[1.0, 2.0, 3.0, 4.0]])
top_p = 0.3
temperature = 1.0
expected_token = mx.array([3])
mock_categorical.return_value = expected_token
token = top_p_sampling(logits, top_p, temperature)
expected_top_probs = mx.array([[0.0, 0.0, 0.0, 0.643914]])
self.assertTrue(mx.allclose(token, expected_token))
args, _ = mock_categorical.call_args
self.assertTrue(mx.allclose(args[0], mx.log(expected_top_probs)))
logits = mx.array([[1.0, 2.0, 3.0, 4.0]])
top_p = 0.9
temperature = 1.0
expected_token = mx.array([3])
mock_categorical.return_value = expected_token
token = top_p_sampling(logits, top_p, temperature)
expected_top_probs = mx.array([[0.0, 0.0871443, 0.236883, 0.643914]])
self.assertTrue(mx.allclose(token, expected_token))
args, _ = mock_categorical.call_args
self.assertTrue(mx.allclose(args[0], mx.log(expected_top_probs)))
if __name__ == "__main__":
unittest.main()