mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 01:17:28 +08:00

* use nn.RMSNorm, use sdpa, cleanup * bump mlx versions * minor update * use fast layer norm * version bump * update requirement for whisper * update requirement for gguf
380 lines
11 KiB
Python
380 lines
11 KiB
Python
# Copyright © 2023-2024 Apple Inc.
|
|
|
|
import argparse
|
|
import json
|
|
import math
|
|
import time
|
|
from pathlib import Path
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
import mlx.optimizers as optim
|
|
import numpy as np
|
|
import utils as lora_utils
|
|
from mlx.utils import tree_flatten, tree_unflatten
|
|
from models import LoRALinear
|
|
|
|
|
|
def build_parser():
|
|
parser = argparse.ArgumentParser(description="LoRA or QLoRA finetuning.")
|
|
parser.add_argument(
|
|
"--model",
|
|
default="mlx_model",
|
|
help="The path to the local model directory or Hugging Face repo.",
|
|
)
|
|
# Generation args
|
|
parser.add_argument(
|
|
"--max-tokens",
|
|
"-m",
|
|
type=int,
|
|
default=100,
|
|
help="The maximum number of tokens to generate",
|
|
)
|
|
parser.add_argument(
|
|
"--temp", type=float, default=0.8, help="The sampling temperature"
|
|
)
|
|
parser.add_argument(
|
|
"--prompt",
|
|
"-p",
|
|
type=str,
|
|
help="The prompt for generation",
|
|
default=None,
|
|
)
|
|
|
|
# Training args
|
|
parser.add_argument(
|
|
"--train",
|
|
action="store_true",
|
|
help="Do training",
|
|
)
|
|
parser.add_argument(
|
|
"--data",
|
|
type=str,
|
|
default="data/",
|
|
help="Directory with {train, valid, test}.jsonl files",
|
|
)
|
|
parser.add_argument(
|
|
"--lora-layers",
|
|
type=int,
|
|
default=16,
|
|
help="Number of layers to fine-tune",
|
|
)
|
|
parser.add_argument("--batch-size", type=int, default=4, help="Minibatch size.")
|
|
parser.add_argument(
|
|
"--iters", type=int, default=1000, help="Iterations to train for."
|
|
)
|
|
parser.add_argument(
|
|
"--val-batches",
|
|
type=int,
|
|
default=25,
|
|
help="Number of validation batches, -1 uses the entire validation set.",
|
|
)
|
|
parser.add_argument(
|
|
"--learning-rate", type=float, default=1e-5, help="Adam learning rate."
|
|
)
|
|
parser.add_argument(
|
|
"--steps-per-report",
|
|
type=int,
|
|
default=10,
|
|
help="Number of training steps between loss reporting.",
|
|
)
|
|
parser.add_argument(
|
|
"--steps-per-eval",
|
|
type=int,
|
|
default=200,
|
|
help="Number of training steps between validations.",
|
|
)
|
|
parser.add_argument(
|
|
"--resume-adapter-file",
|
|
type=str,
|
|
default=None,
|
|
help="Load path to resume training with the given adapter weights.",
|
|
)
|
|
parser.add_argument(
|
|
"--adapter-file",
|
|
type=str,
|
|
default="adapters.npz",
|
|
help="Save/load path for the trained adapter weights.",
|
|
)
|
|
parser.add_argument(
|
|
"--save-every",
|
|
type=int,
|
|
default=100,
|
|
help="Save the model every N iterations.",
|
|
)
|
|
parser.add_argument(
|
|
"--test",
|
|
action="store_true",
|
|
help="Evaluate on the test set after training",
|
|
)
|
|
parser.add_argument(
|
|
"--test-batches",
|
|
type=int,
|
|
default=500,
|
|
help="Number of test set batches, -1 uses the entire test set.",
|
|
)
|
|
parser.add_argument("--seed", type=int, default=0, help="The PRNG seed")
|
|
return parser
|
|
|
|
|
|
class Dataset:
|
|
"""
|
|
Light-weight wrapper to hold lines from a jsonl file
|
|
"""
|
|
|
|
def __init__(self, path: Path, key: str = "text"):
|
|
if not path.exists():
|
|
self._data = None
|
|
else:
|
|
with open(path, "r") as fid:
|
|
self._data = [json.loads(l) for l in fid]
|
|
self._key = key
|
|
|
|
def __getitem__(self, idx: int):
|
|
return self._data[idx][self._key]
|
|
|
|
def __len__(self):
|
|
return len(self._data)
|
|
|
|
|
|
def load(args):
|
|
def load_and_check(name):
|
|
dataset_path = Path(args.data) / f"{name}.jsonl"
|
|
try:
|
|
return Dataset(dataset_path)
|
|
except Exception as e:
|
|
print(f"Unable to build dataset {dataset_path} ({e})")
|
|
raise
|
|
|
|
names = ("train", "valid", "test")
|
|
train, valid, test = (load_and_check(n) for n in names)
|
|
|
|
if args.train and len(train) == 0:
|
|
raise ValueError(
|
|
"Training set not found or empty. Must provide training set for fine-tuning."
|
|
)
|
|
if args.train and len(valid) == 0:
|
|
raise ValueError(
|
|
"Validation set not found or empty. Must provide validation set for fine-tuning."
|
|
)
|
|
if args.test and len(test) == 0:
|
|
raise ValueError(
|
|
"Test set not found or empty. Must provide test set for evaluation."
|
|
)
|
|
return train, valid, test
|
|
|
|
|
|
def loss(model, inputs, targets, lengths):
|
|
# Run model on inputs
|
|
logits, _ = model(inputs)
|
|
logits = logits.astype(mx.float32)
|
|
|
|
# Mask padding tokens
|
|
length_mask = mx.arange(inputs.shape[1])[None, :] < lengths[:, None]
|
|
|
|
# Calculate the loss
|
|
ce = nn.losses.cross_entropy(logits, targets) * length_mask
|
|
ntoks = length_mask.sum()
|
|
ce = ce.sum() / ntoks
|
|
return ce, ntoks
|
|
|
|
|
|
def iterate_batches(dset, tokenizer, batch_size, train=False):
|
|
# Shuffle indices
|
|
while True:
|
|
indices = np.arange(len(dset))
|
|
if train:
|
|
indices = np.random.permutation(indices)
|
|
|
|
# Collect batches from dataset
|
|
for i in range(0, len(indices) - batch_size + 1, batch_size):
|
|
# Encode batch
|
|
batch = [tokenizer.encode(dset[indices[i + j]]) for j in range(batch_size)]
|
|
lengths = [len(x) for x in batch]
|
|
|
|
# Check if any sequence is longer than 2048 tokens
|
|
if max(lengths) > 2048:
|
|
print(
|
|
"[WARNING] Some sequences are longer than 2048 tokens. "
|
|
"Consider pre-splitting your data to save memory."
|
|
)
|
|
|
|
# Pad to the max length
|
|
batch_arr = np.zeros((batch_size, max(lengths)), np.int32)
|
|
|
|
for j in range(batch_size):
|
|
batch_arr[j, : lengths[j]] = batch[j]
|
|
batch = mx.array(batch_arr)
|
|
yield batch[:, :-1], batch[:, 1:], mx.array(lengths)
|
|
|
|
if not train:
|
|
break
|
|
|
|
|
|
def evaluate(model, dataset, loss, tokenizer, batch_size, num_batches):
|
|
all_losses = []
|
|
ntokens = 0
|
|
for it, batch in zip(
|
|
range(num_batches),
|
|
iterate_batches(dataset, tokenizer, batch_size),
|
|
):
|
|
losses, toks = loss(model, *batch)
|
|
all_losses.append((losses * toks).item())
|
|
ntokens += toks.item()
|
|
|
|
return np.sum(all_losses) / ntokens
|
|
|
|
|
|
def train(model, train_set, val_set, optimizer, loss, tokenizer, args):
|
|
# Create value and grad function for loss
|
|
loss_value_and_grad = nn.value_and_grad(model, loss)
|
|
|
|
losses = []
|
|
n_tokens = 0
|
|
|
|
# Main training loop
|
|
start = time.perf_counter()
|
|
for it, batch in zip(
|
|
range(args.iters),
|
|
iterate_batches(train_set, tokenizer, args.batch_size, train=True),
|
|
):
|
|
# Forward and backward pass
|
|
(lvalue, toks), grad = loss_value_and_grad(model, *batch)
|
|
|
|
# Model update
|
|
optimizer.update(model, grad)
|
|
mx.eval(model.parameters(), optimizer.state, lvalue)
|
|
|
|
# Record loss
|
|
losses.append(lvalue.item())
|
|
n_tokens += toks.item()
|
|
|
|
# Report training loss if needed
|
|
if (it + 1) % args.steps_per_report == 0:
|
|
train_loss = np.mean(losses)
|
|
|
|
stop = time.perf_counter()
|
|
print(
|
|
f"Iter {it + 1}: Train loss {train_loss:.3f}, "
|
|
f"It/sec {args.steps_per_report / (stop - start):.3f}, "
|
|
f"Tokens/sec {float(n_tokens) / (stop - start):.3f}"
|
|
)
|
|
losses = []
|
|
n_tokens = 0
|
|
start = time.perf_counter()
|
|
|
|
# Report validation loss if needed
|
|
if it == 0 or (it + 1) % args.steps_per_eval == 0:
|
|
stop = time.perf_counter()
|
|
val_loss = evaluate(
|
|
model, val_set, loss, tokenizer, args.batch_size, args.val_batches
|
|
)
|
|
print(
|
|
f"Iter {it + 1}: "
|
|
f"Val loss {val_loss:.3f}, "
|
|
f"Val took {(time.perf_counter() - stop):.3f}s"
|
|
)
|
|
|
|
start = time.perf_counter()
|
|
|
|
# Save adapter weights if needed
|
|
if (it + 1) % args.save_every == 0:
|
|
mx.savez(
|
|
args.adapter_file, **dict(tree_flatten(model.trainable_parameters()))
|
|
)
|
|
print(f"Iter {it + 1}: Saved adapter weights to {args.adapter_file}.")
|
|
|
|
|
|
def generate(model, prompt, tokenizer, args):
|
|
print(prompt, end="", flush=True)
|
|
|
|
prompt = mx.array(tokenizer.encode(prompt))
|
|
|
|
tokens = []
|
|
skip = 0
|
|
for token, n in zip(
|
|
lora_utils.generate(prompt, model, args.temp),
|
|
range(args.max_tokens),
|
|
):
|
|
if token == tokenizer.eos_token_id:
|
|
break
|
|
|
|
tokens.append(token.item())
|
|
s = tokenizer.decode(tokens)
|
|
if len(s) - skip > 1:
|
|
print(s[skip:-1], end="", flush=True)
|
|
skip = len(s) - 1
|
|
print(tokenizer.decode(tokens)[skip:], flush=True)
|
|
print("=" * 10)
|
|
if len(tokens) == 0:
|
|
print("No tokens generated for this prompt")
|
|
return
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = build_parser()
|
|
args = parser.parse_args()
|
|
|
|
np.random.seed(args.seed)
|
|
|
|
print("Loading pretrained model")
|
|
model, tokenizer, _ = lora_utils.load(args.model)
|
|
|
|
# Freeze all layers other than LORA linears
|
|
model.freeze()
|
|
for l in model.model.layers[len(model.model.layers) - args.lora_layers :]:
|
|
l.self_attn.q_proj = LoRALinear.from_linear(l.self_attn.q_proj)
|
|
l.self_attn.v_proj = LoRALinear.from_linear(l.self_attn.v_proj)
|
|
if hasattr(l, "block_sparse_moe"):
|
|
l.block_sparse_moe.gate = LoRALinear.from_linear(l.block_sparse_moe.gate)
|
|
|
|
p = sum(v.size for _, v in tree_flatten(model.parameters())) / 10**6
|
|
print(f"Total parameters {p:.3f}M")
|
|
p = sum(v.size for _, v in tree_flatten(model.trainable_parameters())) / 10**6
|
|
print(f"Trainable parameters {p:.3f}M")
|
|
|
|
print("Loading datasets")
|
|
train_set, valid_set, test_set = load(args)
|
|
|
|
# Resume training the given adapters.
|
|
if args.resume_adapter_file is not None:
|
|
print(f"Loading pretrained adapters from {args.resume_adapter_file}")
|
|
model.load_weights(args.resume_adapter_file, strict=False)
|
|
|
|
if args.train:
|
|
print("Training")
|
|
opt = optim.Adam(learning_rate=args.learning_rate)
|
|
|
|
# Train model
|
|
train(model, train_set, valid_set, opt, loss, tokenizer, args)
|
|
|
|
# Save adapter weights
|
|
mx.savez(args.adapter_file, **dict(tree_flatten(model.trainable_parameters())))
|
|
|
|
# Load the LoRA adapter weights which we assume should exist by this point
|
|
if not Path(args.adapter_file).is_file():
|
|
raise ValueError(
|
|
f"Adapter file {args.adapter_file} missing. "
|
|
"Use --train to learn and save the adapters.npz."
|
|
)
|
|
model.load_weights(args.adapter_file, strict=False)
|
|
|
|
if args.test:
|
|
print("Testing")
|
|
model.eval()
|
|
test_loss = evaluate(
|
|
model,
|
|
test_set,
|
|
loss,
|
|
tokenizer,
|
|
args.batch_size,
|
|
num_batches=args.test_batches,
|
|
)
|
|
test_ppl = math.exp(test_loss)
|
|
|
|
print(f"Test loss {test_loss:.3f}, Test ppl {test_ppl:.3f}.")
|
|
|
|
if args.prompt is not None:
|
|
print("Generating")
|
|
generate(model, args.prompt, tokenizer, args)
|