mlx-examples/lora/llama.py
2023-11-30 11:08:53 -08:00

200 lines
6.7 KiB
Python

# Copyright © 2023 Apple Inc.
import math
import mlx.core as mx
import mlx.nn as nn
from mlx.utils import tree_unflatten
class LoRALinear(nn.Module):
@staticmethod
def from_linear(linear: nn.Linear, rank: int = 8):
input_dims, output_dims = linear.weight.shape
lora_lin = LoRALinear(input_dims, output_dims, rank)
lora_lin.linear = linear
return lora_lin
def __init__(
self, input_dims: int, output_dims: int, lora_rank: int = 8, bias: bool = False
):
super().__init__()
# Regular linear layer weights
self.linear = nn.Linear(input_dims, output_dims, bias=bias)
# Low rank lora weights
scale = 1 / math.sqrt(input_dims)
self.lora_a = mx.random.uniform(
low=-scale,
high=scale,
shape=(input_dims, lora_rank),
)
self.lora_b = mx.zeros(shape=(lora_rank, output_dims))
def __call__(self, x):
y = self.linear(x)
z = (x @ self.lora_a) @ self.lora_b
return y + 2.0 * z
class LlamaAttention(nn.Module):
def __init__(self, dims: int, num_heads: int):
super().__init__()
self.num_heads = num_heads
self.rope = nn.RoPE(dims // num_heads, traditional=True)
self.query_proj = nn.Linear(dims, dims, bias=False)
self.key_proj = nn.Linear(dims, dims, bias=False)
self.value_proj = nn.Linear(dims, dims, bias=False)
self.out_proj = nn.Linear(dims, dims, bias=False)
def __call__(self, queries, keys, values, mask=None, cache=None):
queries = self.query_proj(queries)
keys = self.key_proj(keys)
values = self.value_proj(values)
# Extract some shapes
num_heads = self.num_heads
B, L, D = queries.shape
# Prepare the queries, keys and values for the attention computation
queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
# Add RoPE to the queries and keys and combine them with the cache
if cache is not None:
key_cache, value_cache = cache
queries = self.rope(queries, offset=key_cache.shape[2])
keys = self.rope(keys, offset=key_cache.shape[2])
keys = mx.concatenate([key_cache, keys], axis=2)
values = mx.concatenate([value_cache, values], axis=2)
else:
queries = self.rope(queries)
keys = self.rope(keys)
# Finally perform the attention computation
scale = math.sqrt(1 / queries.shape[-1])
scores = (queries * scale) @ keys.transpose(0, 1, 3, 2)
if mask is not None:
scores = scores + mask
scores = mx.softmax(scores, axis=-1)
values_hat = (scores @ values).transpose(0, 2, 1, 3).reshape(B, L, -1)
# Note that we return the keys and values to possibly be used as a cache
return self.out_proj(values_hat), (keys, values)
class LlamaEncoderLayer(nn.Module):
def __init__(self, dims: int, mlp_dims: int, num_heads: int):
super().__init__()
self.attention = LlamaAttention(dims, num_heads)
self.norm1 = nn.RMSNorm(dims)
self.norm2 = nn.RMSNorm(dims)
self.linear1 = nn.Linear(dims, mlp_dims, bias=False)
self.linear2 = nn.Linear(dims, mlp_dims, bias=False)
self.linear3 = nn.Linear(mlp_dims, dims, bias=False)
def __call__(self, x, mask=None, cache=None):
y = self.norm1(x)
y, cache = self.attention(y, y, y, mask, cache)
x = x + y
y = self.norm2(x)
a = self.linear1(y)
b = self.linear2(y)
y = a * mx.sigmoid(a) * b
y = self.linear3(y)
x = x + y
return x, cache
class Llama(nn.Module):
def __init__(
self, num_layers: int, vocab_size: int, dims: int, mlp_dims: int, num_heads: int
):
super().__init__()
self.embedding = nn.Embedding(vocab_size, dims)
self.layers = [
LlamaEncoderLayer(dims, mlp_dims, num_heads) for _ in range(num_layers)
]
self.norm = nn.RMSNorm(dims)
self.out_proj = nn.Linear(dims, vocab_size, bias=False)
def __call__(self, x):
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
x = self.embedding(x)
for l in self.layers:
x, _ = l(x, mask)
x = self.norm(x)
return self.out_proj(x)
def generate(self, x, temp=1.0):
cache = []
try:
# Make an additive causal mask. We will need that to process the prompt.
mask = nn.MultiHeadAttention.create_additive_causal_mask(x.shape[1])
mask = mask.astype(self.embedding.weight.dtype)
# First we process the prompt x the same was as in __call__ but
# save the caches in cache
x = self.embedding(x)
for l in self.layers:
x, c = l(x, mask=mask)
# We store the per layer cache in a simple python list
cache.append(c)
x = self.norm(x)
# We only care about the last logits that generate the next token
y = self.out_proj(x[:, -1])
y = mx.random.categorical(y * (1 / temp))
# y now has size [1]
yield y
# Now we parsed the prompt and generated the first token we
# need to feed it back into the model and loop to generate the
# rest.
while True:
# Unsqueezing the last dimension to add a sequence length
# dimension of 1
x = y[:, None]
x = self.embedding(x)
for i in range(len(cache)):
# We are overwriting the arrays in the cache list. When
# the computation will happen, MLX will be discarding the
# old cache the moment it is not needed anymore.
x, cache[i] = self.layers[i](x, mask=None, cache=cache[i])
x = self.norm(x)
y = self.out_proj(x[:, -1])
y = mx.random.categorical(y * (1 / temp))
yield y
finally:
del cache
def load_model(model_path):
weights = mx.load(model_path)
mlp_dims, dims = weights["layers.0.linear1.weight"].shape
num_heads = dims // 128
num_layers = max(int(l.split(".")[1]) for l in weights.keys() if "layers" in l) + 1
vocab_size = weights["out_proj.weight"].shape[-1]
model = Llama(num_layers, vocab_size, dims, mlp_dims, num_heads)
model.update(tree_unflatten(list(weights.items())))
mx.eval(model.parameters())
return model