mlx-examples/llms/mlx_lm/models/openelm.py
Prince Canuma c012eb173f
Add support for OpenELM (#719)
* add openELM

* update splitting logic

* update qkv logic and, transformer and MLP block

* code formatting and fix args

* fix array slicing and remove unused var :)

* add to tuner

* use mx.split for slicing qkv

* merge with phi3

* remove rope scaling logic

* code formatting
2024-04-25 16:49:28 -07:00

229 lines
7.1 KiB
Python

from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Union
import mlx.core as mx
import mlx.nn as nn
from .base import BaseModelArgs
@dataclass
class ModelArgs(BaseModelArgs):
model_type: str
head_dim: int
num_transformer_layers: int
model_dim: int
vocab_size: int
ffn_dim_divisor: int
num_query_heads: List
num_kv_heads: List
ffn_multipliers: List
ffn_with_glu: bool = True
normalize_qk_projections: bool = True
share_input_output_layers: bool = True
rms_norm_eps: float = 1e-6
rope_theta: float = 10000
rope_traditional: bool = False
def make_divisible(
v: Union[float, int],
divisor: Optional[int] = 8,
min_value: Optional[Union[float, int]] = None,
) -> Union[float, int]:
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by the divisor
It can be seen at:
https://github.com/tensorflow/models/blob/2cfc99eff5e5eb729c6793d2f3d03aa1c9be2b15/research/slim/nets/mobilenet/mobilenet.py#L62
Args:
v: input value
divisor: default to 8
min_value: minimum divisor value
Returns:
new_v: new divisible value
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
class Attention(nn.Module):
def __init__(self, args: ModelArgs, layer_id: int):
super().__init__()
self.head_dim = head_dim = args.head_dim
self.layer_id = layer_id
self.model_dim = model_dim = args.model_dim
self.n_heads = n_heads = args.num_query_heads[layer_id]
self.n_kv_heads = n_kv_heads = args.num_kv_heads[layer_id]
self.scale = head_dim**-0.5
op_size = (n_heads + (n_kv_heads * 2)) * head_dim
self.qkv_proj = nn.Linear(model_dim, op_size, bias=False)
self.out_proj = nn.Linear(n_heads * head_dim, model_dim, bias=False)
self.normalize_qk_projections = args.normalize_qk_projections
if self.normalize_qk_projections:
self.q_norm = nn.RMSNorm(head_dim, eps=args.rms_norm_eps)
self.k_norm = nn.RMSNorm(head_dim, eps=args.rms_norm_eps)
self.rope = nn.RoPE(
head_dim, traditional=args.rope_traditional, base=args.rope_theta
)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
B, L, D = x.shape
qkv = self.qkv_proj(x)
# [B, S, (q_h + k_h + v_h) * h] --> [B, S, (q_h + k_h + v_h), h] -> [B, (q_h + k_h + v_h), S, h]
qkv = qkv.reshape(
B, L, self.n_heads + (self.n_kv_heads * 2), self.head_dim
).transpose(0, 2, 1, 3)
# [B, (q_h + k_h + v_h), S, h] --> [B, q_h, S h], [B, k_h, S, h], [B, v_h, S, h]
queries, keys, values = mx.split(
qkv, [self.n_heads, self.n_heads + self.n_kv_heads], axis=1
)
# Prepare the queries, keys and values for the attention computation
if self.normalize_qk_projections:
queries = self.q_norm(queries)
keys = self.k_norm(keys)
if cache is not None:
key_cache, value_cache = cache
queries = self.rope(queries, offset=key_cache.shape[2])
keys = self.rope(keys, offset=key_cache.shape[2])
keys = mx.concatenate([key_cache, keys], axis=2)
values = mx.concatenate([value_cache, values], axis=2)
else:
queries = self.rope(queries)
keys = self.rope(keys)
output = mx.fast.scaled_dot_product_attention(
queries, keys, values, scale=self.scale, mask=mask
)
output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.out_proj(output), (keys, values)
class MLP(nn.Module):
def __init__(self, args: ModelArgs, layer_id: int):
super().__init__()
self.args = args
dim = args.model_dim
ffn_multiplier = args.ffn_multipliers[layer_id]
intermediate_dim = int(
make_divisible(
ffn_multiplier * args.model_dim,
divisor=args.ffn_dim_divisor,
)
)
self.proj_1 = nn.Linear(dim, 2 * intermediate_dim, bias=False)
self.proj_2 = nn.Linear(intermediate_dim, dim, bias=False)
def __call__(self, x) -> mx.array:
x = self.proj_1(x)
gate, x = mx.split(x, 2, axis=-1)
return self.proj_2(nn.silu(gate) * x)
class TransformerBlock(nn.Module):
def __init__(self, args: ModelArgs, layer_id: int):
super().__init__()
dim = args.model_dim
self.attn = Attention(args, layer_id=layer_id)
self.ffn = MLP(args, layer_id=layer_id)
self.ffn_norm = nn.RMSNorm(dim, eps=args.rms_norm_eps)
self.attn_norm = nn.RMSNorm(dim, eps=args.rms_norm_eps)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
r, cache = self.attn(self.attn_norm(x), mask, cache)
h = x + r
r = self.ffn(self.ffn_norm(h))
out = h + r
return out, cache
class OpenELMModel(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.vocab_size = args.vocab_size
self.num_transformer_layers = args.num_transformer_layers
assert self.vocab_size > 0
self.token_embeddings = nn.Embedding(args.vocab_size, args.model_dim)
self.layers = [
TransformerBlock(args, layer_id=layer_id)
for layer_id in range(self.num_transformer_layers)
]
self.norm = nn.RMSNorm(args.model_dim, eps=args.rms_norm_eps)
def __call__(
self,
inputs: mx.array,
cache=None,
):
h = self.token_embeddings(inputs)
mask = None
if h.shape[1] > 1:
mask = nn.MultiHeadAttention.create_additive_causal_mask(h.shape[1])
mask = mask.astype(h.dtype)
if cache is None:
cache = [None] * len(self.layers)
for e, layer in enumerate(self.layers):
h, cache[e] = layer(h, mask, cache[e])
return self.norm(h), cache
class Model(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.args = args
self.model_type = args.model_type
self.transformer = OpenELMModel(args)
if not args.share_input_output_layers:
self.lm_head = nn.Linear(args.model_dim, args.vocab_size, bias=False)
def __call__(
self,
inputs: mx.array,
cache=None,
):
out, cache = self.transformer(inputs, cache)
if self.args.share_input_output_layers:
out = self.transformer.token_embeddings.as_linear(out)
else:
out = self.lm_head(out)
return out, cache
@property
def layers(self):
return self.transformer.layers