mlx-examples/llms/mlx_lm/sample_utils.py
Anchen 0ab01b4626
fix(mlx-lm): sorted probs in top_p implementation. (#610)
* fix(mlx-lm): the top p imp

* chore: address comment
2024-03-25 15:07:55 -07:00

40 lines
1.3 KiB
Python

import mlx.core as mx
def top_p_sampling(logits: mx.array, top_p: float, temperature: float) -> mx.array:
"""
Apply top-p (nucleus) sampling to logits.
Args:
logits: The logits from the model's output.
top_p: The cumulative probability threshold for top-p filtering.
temperature: Temperature parameter for softmax distribution reshaping.
Returns:
token selected based on the top-p criterion.
"""
if (
logits.dtype == mx.bfloat16
): # workaround for unable to load kernel contiguous_scan_inclusive_sum_bfloat16_bfloat16
logits = logits.astype(mx.float32)
# referenced implementation from https://github.com/huggingface/transformers/blob/main/src/transformers/generation/logits_process.py#L449-L460
probs = mx.softmax(logits / temperature, axis=-1)
# sort probs in ascending order
sorted_indices = mx.argsort(probs, axis=-1)
sorted_probs = probs[..., sorted_indices.squeeze(0)]
cumulative_probs = mx.cumsum(sorted_probs, axis=-1)
# select tokens with cumulative probs below threshold
top_probs = mx.where(
cumulative_probs > 1 - top_p,
sorted_probs,
mx.zeros_like(sorted_probs),
)
sorted_token = mx.random.categorical(mx.log(top_probs))
token = sorted_indices.squeeze(0)[sorted_token]
return token