mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 09:21:18 +08:00

* LoRA: Extract pre_processing_model function * LoRA: Extract small functions(train_model,evaluate_model) * move test case to test_tuner_utils.py * nits * nits * remove extra param, validate at it 0 * version * fix test --------- Co-authored-by: Awni Hannun <awni@apple.com>
192 lines
6.0 KiB
Python
192 lines
6.0 KiB
Python
# Copyright © 2024 Apple Inc.
|
|
|
|
import math
|
|
import sys
|
|
import unittest
|
|
from io import StringIO
|
|
from unittest.mock import MagicMock
|
|
|
|
import mlx.optimizers as opt
|
|
from mlx.utils import tree_flatten
|
|
from mlx_lm import lora, tuner
|
|
from mlx_lm.tuner.lora import LoRALinear
|
|
from mlx_lm.tuner.trainer import evaluate
|
|
from mlx_lm.tuner.utils import build_schedule
|
|
|
|
|
|
class TestLora(unittest.TestCase):
|
|
def setUp(self):
|
|
self.capturedOutput = StringIO()
|
|
sys.stdout = self.capturedOutput
|
|
|
|
def tearDown(self):
|
|
sys.stdout = sys.__stdout__
|
|
|
|
def test_to_lora(self):
|
|
from mlx_lm.models import llama
|
|
|
|
args = llama.ModelArgs(
|
|
model_type="llama",
|
|
hidden_size=1024,
|
|
num_hidden_layers=4,
|
|
intermediate_size=2048,
|
|
num_attention_heads=4,
|
|
rms_norm_eps=1e-5,
|
|
vocab_size=10_000,
|
|
)
|
|
|
|
lora_layers = 4
|
|
|
|
def check_config(params):
|
|
n_keys = 2
|
|
if "keys" in params:
|
|
n_keys = len(params["keys"])
|
|
model = llama.Model(args)
|
|
model.freeze()
|
|
tuner.utils.linear_to_lora_layers(model, lora_layers, params)
|
|
trainable_params = sum(
|
|
v.size for _, v in tree_flatten(model.trainable_parameters())
|
|
)
|
|
self.assertEqual(
|
|
trainable_params, lora_layers * params["rank"] * 1024 * 2 * n_keys
|
|
)
|
|
|
|
params = {"rank": 8, "alpha": 16, "dropout": 0.0, "scale": 10.0}
|
|
check_config(params)
|
|
|
|
params["rank"] = 1
|
|
check_config(params)
|
|
|
|
params["keys"] = ["self_attn.k_proj"]
|
|
check_config(params)
|
|
|
|
|
|
class TestScheduleConfig(unittest.TestCase):
|
|
def test_join(self):
|
|
config = {"name": "cosine_decay", "warmup": 100, "arguments": [1e-5, 100]}
|
|
cos_with_warmup = build_schedule(config)
|
|
self.assertIsNotNone(cos_with_warmup)
|
|
|
|
self.assertEqual(cos_with_warmup(0), 0.0)
|
|
self.assertAlmostEqual(cos_with_warmup(101), 1e-5, delta=1e-1)
|
|
optimizer = opt.Adam(learning_rate=cos_with_warmup)
|
|
for _ in range(100):
|
|
optimizer.update({}, {})
|
|
self.assertAlmostEqual(optimizer.learning_rate.item(), 1e-5, delta=1e-1)
|
|
for _ in range(100):
|
|
optimizer.update({}, {})
|
|
expected_lr = 1e-5 * 0.5 * (1.0 + math.cos(math.pi * 200 / 10))
|
|
self.assertAlmostEqual(optimizer.learning_rate.item(), expected_lr, delta=1e-1)
|
|
|
|
def test_single_schedule(self):
|
|
|
|
config = {
|
|
"name": "cosine_decay",
|
|
"arguments": [0.1, 10],
|
|
}
|
|
lr_schedule = build_schedule(config)
|
|
lr = lr_schedule(4)
|
|
expected_lr = 0.1 * 0.5 * (1.0 + math.cos(math.pi * 4 / 10))
|
|
self.assertAlmostEqual(lr, expected_lr, delta=1e-7)
|
|
|
|
def test_non_zero_warmup(self):
|
|
config = {
|
|
"name": "cosine_decay",
|
|
"warmup": 10,
|
|
"warmup_init": 1e-6,
|
|
"arguments": [1e-5, 20],
|
|
}
|
|
lr_schedule = build_schedule(config)
|
|
lr = lr_schedule(0)
|
|
self.assertAlmostEqual(lr, 1e-6, delta=1e-7)
|
|
|
|
def test_malformed_config(self):
|
|
config = {"warmup": 100}
|
|
self.assertRaises(KeyError, build_schedule, config)
|
|
|
|
config = {"cosine_decay": None}
|
|
self.assertRaises(KeyError, build_schedule, config)
|
|
|
|
def test_evaluate_calls(self):
|
|
mock_model = MagicMock()
|
|
mock_dataset = MagicMock()
|
|
mock_tokenizer = MagicMock()
|
|
mock_default_loss = MagicMock()
|
|
mock_iterate_batches = MagicMock()
|
|
|
|
mock_iterate_batches.return_value = [
|
|
(MagicMock(), MagicMock()),
|
|
(MagicMock(), MagicMock()),
|
|
(MagicMock(), MagicMock()),
|
|
(MagicMock(), MagicMock()),
|
|
(MagicMock(), MagicMock()),
|
|
]
|
|
|
|
mock_default_loss.side_effect = [
|
|
(MagicMock(return_value=0.5), MagicMock(return_value=100)),
|
|
(MagicMock(return_value=0.3), MagicMock(return_value=200)),
|
|
(MagicMock(return_value=0.2), MagicMock(return_value=150)),
|
|
(MagicMock(return_value=0.4), MagicMock(return_value=180)),
|
|
(MagicMock(return_value=0.6), MagicMock(return_value=120)),
|
|
]
|
|
evaluate(
|
|
model=mock_model,
|
|
dataset=mock_dataset,
|
|
tokenizer=mock_tokenizer,
|
|
batch_size=2,
|
|
num_batches=2,
|
|
max_seq_length=2048,
|
|
loss=mock_default_loss,
|
|
iterate_batches=mock_iterate_batches,
|
|
)
|
|
|
|
mock_iterate_batches.assert_called_once_with(
|
|
dataset=mock_dataset,
|
|
tokenizer=mock_tokenizer,
|
|
batch_size=2,
|
|
max_seq_length=2048,
|
|
)
|
|
self.assertEqual(mock_default_loss.call_count, 2)
|
|
|
|
def test_evaluate_infinite_batches(self):
|
|
mock_model = MagicMock()
|
|
mock_dataset = MagicMock()
|
|
mock_tokenizer = MagicMock()
|
|
mock_default_loss = MagicMock()
|
|
mock_iterate_batches = MagicMock()
|
|
|
|
mock_iterate_batches.return_value = [
|
|
(MagicMock(), MagicMock()),
|
|
(MagicMock(), MagicMock()),
|
|
(MagicMock(), MagicMock()),
|
|
]
|
|
|
|
mock_default_loss.side_effect = [
|
|
(MagicMock(return_value=0.5), MagicMock(return_value=100)),
|
|
(MagicMock(return_value=0.3), MagicMock(return_value=200)),
|
|
(MagicMock(return_value=0.2), MagicMock(return_value=150)),
|
|
]
|
|
|
|
evaluate(
|
|
model=mock_model,
|
|
dataset=mock_dataset,
|
|
tokenizer=mock_tokenizer,
|
|
batch_size=2,
|
|
num_batches=-1,
|
|
max_seq_length=2048,
|
|
loss=mock_default_loss,
|
|
iterate_batches=mock_iterate_batches,
|
|
)
|
|
|
|
mock_iterate_batches.assert_called_once_with(
|
|
dataset=mock_dataset,
|
|
tokenizer=mock_tokenizer,
|
|
batch_size=2,
|
|
max_seq_length=2048,
|
|
)
|
|
self.assertEqual(mock_default_loss.call_count, 3)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|