mlx-examples/transformer_lm/torch_main.py
Awni Hannun 27c0a8c002
Add llms subdir + update README (#145)
* add llms subdir + update README

* nits

* use same pre-commit as mlx

* update readmes a bit

* format
2023-12-20 10:22:25 -08:00

199 lines
6.4 KiB
Python

# Copyright © 2023 Apple Inc.
import math
import time
import datasets
import numpy as np
import torch
def to_samples(context_size, dataset):
tokens = dataset.size
window_size = context_size + 1 # include target
samples = tokens - window_size + 1
X = np.lib.stride_tricks.as_strided(
dataset,
shape=(samples, window_size),
strides=(dataset.itemsize, dataset.itemsize),
)
return X[:, :-1], X[:, 1:]
def iterate_batches(batch_size, context_size, dataset):
inputs, targets = to_samples(context_size, dataset)
s = 0
while True:
if s == 0:
# Reset permutation:
perm = np.random.permutation(inputs.shape[0])
ids = perm[s : s + batch_size]
yield inputs[ids], targets[ids]
s += batch_size
if s >= inputs.shape[0]:
s = 0
def create_additive_causal_mask(N, device):
# torch.nn.Transformer.generate_square_subsequent_mask
# gives NaNs with `device="mps"`
indices = torch.arange(N, device=device)
mask = indices.reshape((-1, 1)) < indices.reshape((1, -1))
return mask.to(torch.float32) * -1e9
class TransformerLM(torch.nn.Module):
def __init__(self, vocab_size, num_layers, num_heads, model_dims):
super().__init__()
self.embedding = torch.nn.Embedding(vocab_size, model_dims)
self.transformer = torch.nn.TransformerEncoder(
torch.nn.TransformerEncoderLayer(
model_dims,
num_heads,
4 * model_dims,
dropout=0.0,
norm_first=True,
batch_first=True,
),
num_layers,
)
self.projection = torch.nn.Linear(model_dims, vocab_size)
def forward(self, x):
mask = create_additive_causal_mask(x.shape[1], device=x.device)
x = self.embedding(x)
x = self.transformer(x, mask=mask)
x = self.projection(x)
return x
def main(args, device):
batch_size = args.batch_size
context_size = args.context_size
steps_per_eval = args.steps_per_eval
steps_per_report = args.steps_per_report
# Load vocab and dataset:
vocab, train, valid, test = datasets.ptb()
# Initialize model:
transformer = TransformerLM(len(vocab), args.num_blocks, args.num_heads, args.dim)
transformer = transformer.to(device)
optim = torch.optim.SGD(transformer.parameters(), lr=args.learning_rate, momentum=0)
nparams = sum(
p.numel() for n, p in transformer.named_parameters() if "embedding" not in n
)
print(f"Training a transformer with {nparams / 1024**2:.3f} M parameters")
@torch.no_grad()
def eval_fn(dataset):
inputs, targets = to_samples(context_size, dataset)
loss = 0
for s in range(0, targets.shape[0], batch_size):
bx, by = inputs[s : s + batch_size], targets[s : s + batch_size]
bx, by = map(lambda x: torch.from_numpy(x.astype(int)).to(device), [bx, by])
logits = transformer(bx)
losses = torch.nn.functional.cross_entropy(
logits.flatten(0, 1), by.flatten(), reduction="none"
)
losses = losses.view(-1, by.shape[-1]).mean(-1)
loss += losses.sum().item()
return loss / len(targets)
train_iterator = iterate_batches(batch_size, context_size, train)
losses = []
tic = time.perf_counter()
for it, (inputs, targets) in zip(range(args.num_iters), train_iterator):
inputs, targets = map(
lambda x: torch.from_numpy(x.astype(int)).to(device), [inputs, targets]
)
optim.zero_grad()
logits = transformer(inputs)
loss = torch.nn.functional.cross_entropy(
logits.flatten(0, 1), targets.flatten()
)
loss.backward()
optim.step()
losses.append(loss.item())
if (it + 1) % steps_per_report == 0:
train_loss = np.mean(losses)
toc = time.perf_counter()
print(
f"Iter {it + 1}: Train loss {train_loss:.3f}, "
f"It/sec {steps_per_report / (toc - tic):.3f}"
)
losses = []
tic = time.perf_counter()
if (it + 1) % steps_per_eval == 0:
val_loss = eval_fn(valid)
toc = time.perf_counter()
print(
f"Iter {it + 1}: "
f"Val loss {val_loss:.3f}, "
f"Val ppl {math.exp(val_loss):.3f}, "
f"Val took {(toc - tic):.3f}s, "
)
tic = time.perf_counter()
if args.eval_test:
test_loss = eval_fn(test)
test_ppl = math.exp(test_loss)
print(f"Test loss {test_loss:.3f}, Test ppl {test_ppl:.3f}.")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser("Train a decoder-only Transformer LM with MLX.")
parser.add_argument("--gpu", action="store_true", help="Use the Metal back-end.")
parser.add_argument("--seed", type=int, default=42, help="Seed for the RNGs.")
parser.add_argument(
"--context_size",
type=int,
default=1024,
help="Context size in tokens of the model.",
)
parser.add_argument(
"--num_blocks", type=int, default=12, help="Number of Transformer blocks."
)
parser.add_argument(
"--dim",
type=int,
default=1024,
help="Dimensionality of embeddings and hidden layers.",
)
parser.add_argument(
"--num_heads",
type=int,
default=16,
help="Number of heads used for multi-head attention",
)
parser.add_argument("--batch_size", type=int, default=2, help="Minibatch size.")
parser.add_argument(
"--num_iters", type=int, default=100000, help="Iterations to train for."
)
parser.add_argument(
"--learning_rate", type=float, default=1e-3, help="SGD learning rate."
)
parser.add_argument(
"--steps_per_report",
type=int,
default=10,
help="Number of training steps between loss reporting.",
)
parser.add_argument(
"--steps_per_eval",
type=int,
default=1000,
help="Number of training steps between validations.",
)
parser.add_argument(
"--eval_test",
action="store_true",
help="Evaluate on the test set after training",
)
args = parser.parse_args()
main(args, device="mps" if args.gpu else "cpu")