mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 17:31:18 +08:00

* lazy model import in mlx_lm * change lora loading * fix olmo lora * remove a bunch of unused stuff from plamo * move phixtral to mlx-lm and out of llms/
178 lines
5.2 KiB
Python
178 lines
5.2 KiB
Python
from dataclasses import dataclass
|
|
from typing import Tuple
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
|
|
from .base import BaseModelArgs
|
|
|
|
|
|
@dataclass
|
|
class ModelArgs(BaseModelArgs):
|
|
model_type: str
|
|
hidden_size: int = 2048
|
|
num_attention_heads: int = 16
|
|
num_hidden_layers: int = 24
|
|
kv_channels: int = 128
|
|
max_position_embeddings: int = 8192
|
|
layer_norm_epsilon: float = 1e-6
|
|
intermediate_size: int = 11008
|
|
no_bias: bool = True
|
|
vocab_size: int = 151936
|
|
num_key_value_heads = None
|
|
|
|
def __post_init__(self):
|
|
if self.num_key_value_heads is None:
|
|
self.num_key_value_heads = self.num_attention_heads
|
|
|
|
|
|
class RMSNorm(nn.Module):
|
|
def __init__(self, dims: int, eps: float = 1e-5):
|
|
super().__init__()
|
|
self.weight = mx.ones((dims,))
|
|
self.eps = eps
|
|
|
|
def _norm(self, x):
|
|
return x * mx.rsqrt(x.square().mean(-1, keepdims=True) + self.eps)
|
|
|
|
def __call__(self, x):
|
|
output = self._norm(x.astype(mx.float32)).astype(x.dtype)
|
|
return self.weight * output
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
|
|
hidden_size = args.hidden_size
|
|
self.num_attention_heads = args.num_attention_heads
|
|
|
|
hidden_size_per_attention_head = hidden_size // self.num_attention_heads
|
|
|
|
self.rotary_emb = nn.RoPE(hidden_size_per_attention_head, traditional=False)
|
|
|
|
proj_size = args.kv_channels * self.num_attention_heads
|
|
|
|
self.c_attn = nn.Linear(hidden_size, proj_size * 3, bias=True)
|
|
self.c_proj = nn.Linear(hidden_size, proj_size, bias=not args.no_bias)
|
|
|
|
self.scale = hidden_size_per_attention_head**-0.5
|
|
|
|
def __call__(self, x, mask=None, cache=None):
|
|
qkv = self.c_attn(x)
|
|
|
|
q, k, v = mx.split(qkv, 3, axis=-1)
|
|
|
|
B, L, _ = q.shape
|
|
|
|
q = q.reshape(B, L, self.num_attention_heads, -1).transpose(0, 2, 1, 3)
|
|
k = k.reshape(B, L, self.num_attention_heads, -1).transpose(0, 2, 1, 3)
|
|
v = v.reshape(B, L, self.num_attention_heads, -1).transpose(0, 2, 1, 3)
|
|
|
|
if cache is not None:
|
|
k_cache, v_cache = cache
|
|
q = self.rotary_emb(q, offset=k_cache.shape[2])
|
|
k = self.rotary_emb(k, offset=k_cache.shape[2])
|
|
k = mx.concatenate([k_cache, k], axis=2)
|
|
v = mx.concatenate([v_cache, v], axis=2)
|
|
|
|
else:
|
|
q = self.rotary_emb(q)
|
|
k = self.rotary_emb(k)
|
|
|
|
scores = (q * self.scale) @ k.transpose(0, 1, 3, 2)
|
|
|
|
if mask is not None:
|
|
scores = scores + mask
|
|
|
|
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype)
|
|
v_hat = (scores @ v).transpose(0, 2, 1, 3).reshape(B, L, -1)
|
|
|
|
return self.c_proj(v_hat), (k, v)
|
|
|
|
|
|
class MLP(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
|
|
self.w1 = nn.Linear(
|
|
args.hidden_size, args.intermediate_size // 2, bias=not args.no_bias
|
|
)
|
|
self.w2 = nn.Linear(
|
|
args.hidden_size, args.intermediate_size // 2, bias=not args.no_bias
|
|
)
|
|
self.c_proj = nn.Linear(
|
|
args.intermediate_size // 2, args.hidden_size, bias=not args.no_bias
|
|
)
|
|
|
|
def __call__(self, x):
|
|
a1 = self.w1(x)
|
|
a2 = self.w2(x)
|
|
return self.c_proj(a1 * nn.silu(a2))
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
|
|
self.ln_1 = RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
|
self.attn = Attention(args)
|
|
self.ln_2 = RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
|
self.mlp = MLP(args)
|
|
|
|
def __call__(self, x, mask=None, cache=None):
|
|
residual = x
|
|
x = self.ln_1(x)
|
|
x, cache = self.attn(x, mask=mask, cache=cache)
|
|
residual = x + residual
|
|
x = self.ln_2(residual)
|
|
x = self.mlp(x)
|
|
x = x + residual
|
|
|
|
return x, cache
|
|
|
|
|
|
class QwenModel(nn.Module):
|
|
def __init__(self, args: ModelArgs):
|
|
super().__init__()
|
|
self.wte = nn.Embedding(args.vocab_size, args.hidden_size)
|
|
self.h = [TransformerBlock(args) for _ in range(args.num_hidden_layers)]
|
|
self.ln_f = RMSNorm(args.hidden_size, eps=args.layer_norm_epsilon)
|
|
|
|
def __call__(self, inputs, mask=None, cache=None):
|
|
x = self.wte(inputs)
|
|
|
|
mask = None
|
|
T = x.shape[1]
|
|
if T > 1:
|
|
mask = nn.MultiHeadAttention.create_additive_causal_mask(T)
|
|
mask = mask.astype(x.dtype)
|
|
|
|
if cache is None:
|
|
cache = [None] * len(self.h)
|
|
|
|
for e, layer in enumerate(self.h):
|
|
x, cache[e] = layer(x, mask, cache[e])
|
|
|
|
x = self.ln_f(x[:, T - 1 : T, :])
|
|
return x, cache
|
|
|
|
|
|
class Model(nn.Module):
|
|
def __init__(self, config: ModelArgs):
|
|
super().__init__()
|
|
self.model_type = config.model_type
|
|
self.transformer = QwenModel(config)
|
|
self.lm_head = nn.Linear(
|
|
config.hidden_size, config.vocab_size, bias=not config.no_bias
|
|
)
|
|
|
|
def __call__(
|
|
self,
|
|
x: mx.array,
|
|
mask: mx.array = None,
|
|
cache: mx.array = None,
|
|
) -> Tuple[mx.array, mx.array]:
|
|
y, cache = self.transformer(x, mask, cache)
|
|
return self.lm_head(y), cache
|