Files
mlx-examples/llms/speculative_decoding/model.py
Awni Hannun df706b0814 rebase
2023-12-28 09:04:07 -08:00

197 lines
6.7 KiB
Python

from typing import Optional, Tuple
import mlx.core as mx
import mlx.nn as nn
from mlx.utils import tree_map, tree_unflatten
from transformers import AutoModelForCausalLM, LlamaConfig
def create_additive_causal_mask(N: int, offset: int = 0, dtype: mx.Dtype = mx.float32):
rinds = mx.arange(offset + N)
linds = mx.arange(offset, offset + N) if offset else rinds
mask = linds[:, None] < rinds[None]
mask = mask.astype(dtype) * -1e9
return mask
class RMSNorm(nn.Module):
def __init__(self, dims: int, eps: float = 1e-5):
super().__init__()
self.weight = mx.ones((dims,))
self.eps = eps
def _norm(self, x):
return x * mx.rsqrt(x.square().mean(-1, keepdims=True) + self.eps)
def __call__(self, x):
output = self._norm(x.astype(mx.float32)).astype(x.dtype)
return self.weight * output
class Attention(nn.Module):
def __init__(self, config: LlamaConfig):
super().__init__()
self.config = config
self.n_heads: int = config.num_attention_heads
self.n_kv_heads: int = config.num_key_value_heads
self.repeats = self.n_heads // self.n_kv_heads
self.head_dim = config.hidden_size // self.n_heads
self.scale = self.head_dim**-0.5
self.q_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
self.k_proj = nn.Linear(
config.hidden_size, config.hidden_size // self.repeats, bias=False
)
self.v_proj = nn.Linear(
config.hidden_size, config.hidden_size // self.repeats, bias=False
)
self.o_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
self.rope = nn.RoPE(self.head_dim, traditional=False)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
B, L, D = x.shape
queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
# Prepare the queries, keys and values for the attention computation
queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
values = values.reshape(B, L, self.n_kv_heads, -1).transpose(
0, 2, 1, 3
) # B, n_kv_heads, L, head_dim
def repeat(a):
a = mx.concatenate([mx.expand_dims(a, 2)] * self.repeats, axis=2)
kv_size = a.shape[-1]
return a.reshape([B, self.n_heads, -1, kv_size])
if cache is not None:
key_cache, value_cache = cache
queries = self.rope(queries, offset=key_cache.shape[2])
keys = self.rope(keys, offset=key_cache.shape[2])
keys = mx.concatenate([key_cache, keys], axis=2)
values = mx.concatenate([value_cache, values], axis=2)
else:
queries = self.rope(queries)
keys = self.rope(keys)
scores = (queries * self.scale) @ repeat(keys).transpose(0, 1, 3, 2)
if mask is not None:
scores += mask
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(scores.dtype)
output = (scores @ repeat(values)).transpose(0, 2, 1, 3).reshape(B, L, -1)
return self.o_proj(output), (keys, values)
class FeedForward(nn.Module):
def __init__(self, config: LlamaConfig):
super().__init__()
self.gate_proj = nn.Linear(
config.hidden_size, config.intermediate_size, bias=False
)
self.down_proj = nn.Linear(
config.intermediate_size, config.hidden_size, bias=False
)
self.up_proj = nn.Linear(
config.hidden_size, config.intermediate_size, bias=False
)
def __call__(self, x) -> mx.array:
return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
class TransformerBlock(nn.Module):
def __init__(self, config: LlamaConfig):
super().__init__()
self.n_heads = config.num_attention_heads
self.dim = config.hidden_size
self.self_attn = Attention(config=config)
self.mlp = FeedForward(config=config)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
def __call__(
self,
x: mx.array,
mask: Optional[mx.array] = None,
cache: Optional[Tuple[mx.array, mx.array]] = None,
) -> mx.array:
r, cache = self.self_attn(self.input_layernorm(x), mask, cache)
h = x + r
r = self.mlp(self.post_attention_layernorm(h))
out = h + r
return out, cache
class Llama(nn.Module):
def __init__(self, config: LlamaConfig):
super().__init__()
self.config = config
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = [
TransformerBlock(config=config) for _ in range(config.num_hidden_layers)
]
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.reset_cache()
def truncate_cache(self, num_to_truncate):
cache_length = self.kv_cache[0][0].shape[2]
if num_to_truncate < cache_length:
self.kv_cache = tree_map(
lambda x: x[:, :, :-num_to_truncate, :], self.kv_cache
)
else:
self.reset_cache()
def reset_cache(self):
self.kv_cache = [None] * len(self.layers)
def __call__(
self,
x: mx.array,
next_token_only: bool = False,
):
if self.kv_cache[0]:
offset = self.kv_cache[0][0].shape[-2]
else:
offset = 0
if x.shape[1] > 1:
mask = create_additive_causal_mask(x.shape[1], offset)
mask = mask.astype(self.embed_tokens.weight.dtype)
else:
mask = None
x = self.embed_tokens(x)
for idx, layer in enumerate(self.layers):
x, self.kv_cache[idx] = layer(x, mask, cache=self.kv_cache[idx])
if next_token_only:
x = x[:, -1]
x = self.norm(x)
return self.lm_head(x)
@classmethod
def from_hugging_face(cls, model_path: str):
config = LlamaConfig.from_pretrained(model_path)
torch_weights = AutoModelForCausalLM.from_pretrained(model_path).state_dict()
weights = {
k.replace("model.", ""): mx.array(v.numpy(), mx.float16)
for k, v in torch_weights.items()
}
model = cls(config)
model.update(tree_unflatten(list(weights.items())))
mx.eval(model.parameters())
return model