mlx-examples/bert/README.md
2023-12-08 10:20:50 -05:00

53 lines
1.3 KiB
Markdown

# mlxbert
An implementation of BERT [(Devlin, et al., 2019)](https://aclanthology.org/N19-1423/) within mlx.
## Downloading and Converting Weights
The `convert.py` script relies on `transformers` to download the weights, and exports them as a single `.npz` file.
```
python convert.py \
--bert-model bert-base-uncased
--mlx-model weights/bert-base-uncased.npz
```
## Run the Model
In order to run the model, and have it forward inference on a batch of examples:
```sh
python model.py \
--bert-model bert-base-uncased \
--mlx-model weights/bert-base-uncased.npz
```
Which will show the following outputs:
```
MLX BERT:
[[[-0.17057164 0.08602728 -0.12471077 ... -0.09469379 -0.00275938
0.28314582]
[ 0.15222196 -0.48997563 -0.26665813 ... -0.19935863 -0.17162783
-0.51360303]
[ 0.9460105 0.1358298 -0.2945672 ... 0.00868467 -0.90271163
-0.2785422 ]]]
```
They can be compared against the 🤗 implementation with:
```sh
python hf_model.py \
--bert-model bert-base-uncased
```
Which will show:
```
HF BERT:
[[[-0.17057131 0.08602707 -0.12471108 ... -0.09469365 -0.00275959
0.28314728]
[ 0.15222463 -0.48997375 -0.26665992 ... -0.19936043 -0.17162988
-0.5136028 ]
[ 0.946011 0.13582966 -0.29456618 ... 0.00868565 -0.90271175
-0.27854213]]]
```