mirror of
https://github.com/ml-explore/mlx-examples.git
synced 2025-06-24 17:31:18 +08:00
184 lines
5.1 KiB
Python
184 lines
5.1 KiB
Python
# Copyright © 2023 Apple Inc.
|
|
|
|
import argparse
|
|
import copy
|
|
import glob
|
|
import json
|
|
from pathlib import Path
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
import transformers
|
|
from huggingface_hub import snapshot_download
|
|
from mlx.utils import tree_flatten
|
|
from models import Model, ModelArgs
|
|
|
|
|
|
def fetch_from_hub(model_path: str, local: bool):
|
|
if not local:
|
|
model_path = snapshot_download(
|
|
repo_id=model_path,
|
|
allow_patterns=["*.json", "*.safetensors", "tokenizer.model"],
|
|
)
|
|
|
|
weight_files = glob.glob(f"{model_path}/*.safetensors")
|
|
if len(weight_files) == 0:
|
|
raise FileNotFoundError("No safetensors found in {}".format(model_path))
|
|
|
|
weights = {}
|
|
for wf in weight_files:
|
|
weights.update(mx.load(wf).items())
|
|
|
|
config = transformers.AutoConfig.from_pretrained(model_path)
|
|
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
|
model_path,
|
|
)
|
|
return weights, config.to_dict(), tokenizer
|
|
|
|
|
|
def quantize(weights, config, args):
|
|
quantized_config = copy.deepcopy(config)
|
|
|
|
# Load the model:
|
|
model = Model(ModelArgs.from_dict(config))
|
|
model.load_weights(list(weights.items()))
|
|
|
|
# Quantize the model:
|
|
nn.QuantizedLinear.quantize_module(model, args.q_group_size, args.q_bits)
|
|
|
|
# Update the config:
|
|
quantized_config["quantization"] = {
|
|
"group_size": args.q_group_size,
|
|
"bits": args.q_bits,
|
|
}
|
|
quantized_weights = dict(tree_flatten(model.parameters()))
|
|
|
|
return quantized_weights, quantized_config
|
|
|
|
|
|
def make_shards(weights: dict, max_file_size_gibibyte: int = 15):
|
|
max_file_size_bytes = max_file_size_gibibyte << 30
|
|
shards = []
|
|
shard, shard_size = {}, 0
|
|
for k, v in weights.items():
|
|
estimated_size = v.size * v.dtype.size
|
|
if shard_size + estimated_size > max_file_size_bytes:
|
|
shards.append(shard)
|
|
shard, shard_size = {}, 0
|
|
shard[k] = v
|
|
shard_size += estimated_size
|
|
shards.append(shard)
|
|
return shards
|
|
|
|
|
|
def upload_to_hub(path: str, name: str, hf_path: str):
|
|
import os
|
|
|
|
from huggingface_hub import HfApi, ModelCard, logging
|
|
|
|
repo_id = f"mlx-community/{name}"
|
|
|
|
card = ModelCard.load(hf_path)
|
|
card.data.tags = ["mlx"] if card.data.tags is None else card.data.tags + ["mlx"]
|
|
card.text = f"""
|
|
# {name}
|
|
This model was converted to MLX format from [`{hf_path}`]().
|
|
Refer to the [original model card](https://huggingface.co/{hf_path}) for more details on the model.
|
|
## Use with mlx
|
|
```bash
|
|
pip install mlx
|
|
git clone https://github.com/ml-explore/mlx-examples.git
|
|
cd mlx-examples/llms/hf_llm
|
|
python generate.py --model {repo_id} --prompt "My name is"
|
|
```
|
|
"""
|
|
card.save(os.path.join(path, "README.md"))
|
|
|
|
logging.set_verbosity_info()
|
|
|
|
api = HfApi()
|
|
api.create_repo(repo_id=repo_id, exist_ok=True)
|
|
api.upload_folder(
|
|
folder_path=path,
|
|
repo_id=repo_id,
|
|
repo_type="model",
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(
|
|
description="Convert Hugging Face model to MLX format"
|
|
)
|
|
parser.add_argument(
|
|
"--hf-path",
|
|
type=str,
|
|
help="Path to the Hugging Face model.",
|
|
)
|
|
parser.add_argument(
|
|
"--mlx-path",
|
|
type=str,
|
|
default="mlx_model",
|
|
help="Path to save the MLX model.",
|
|
)
|
|
parser.add_argument(
|
|
"-q",
|
|
"--quantize",
|
|
help="Generate a quantized model.",
|
|
action="store_true",
|
|
)
|
|
parser.add_argument(
|
|
"--q-group-size",
|
|
help="Group size for quantization.",
|
|
type=int,
|
|
default=64,
|
|
)
|
|
parser.add_argument(
|
|
"--q-bits",
|
|
help="Bits per weight for quantization.",
|
|
type=int,
|
|
default=4,
|
|
)
|
|
parser.add_argument(
|
|
"--dtype",
|
|
help="Type to save the parameters, ignored if -q is given.",
|
|
type=str,
|
|
choices=["float16", "bfloat16", "float32"],
|
|
default="float16",
|
|
)
|
|
parser.add_argument(
|
|
"--upload-name",
|
|
help="The name of model to upload to Hugging Face MLX Community",
|
|
type=str,
|
|
default=None,
|
|
)
|
|
parser.add_argument(
|
|
"-l",
|
|
"--local",
|
|
action="store_true",
|
|
help="Whether the hf-path points to a local filesystem.",
|
|
default=False,
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
print("[INFO] Loading")
|
|
weights, config, tokenizer = fetch_from_hub(args.hf_path, args.local)
|
|
|
|
dtype = mx.float16 if args.quantize else getattr(mx, args.dtype)
|
|
weights = {k: v.astype(dtype) for k, v in weights.items()}
|
|
if args.quantize:
|
|
print("[INFO] Quantizing")
|
|
weights, config = quantize(weights, config, args)
|
|
|
|
mlx_path = Path(args.mlx_path)
|
|
mlx_path.mkdir(parents=True, exist_ok=True)
|
|
shards = make_shards(weights)
|
|
for i, shard in enumerate(shards):
|
|
mx.save_safetensors(str(mlx_path / f"weights.{i:02d}.safetensors"), shard)
|
|
tokenizer.save_pretrained(mlx_path)
|
|
with open(mlx_path / "config.json", "w") as fid:
|
|
json.dump(config, fid, indent=4)
|
|
|
|
if args.upload_name is not None and not args.local:
|
|
upload_to_hub(mlx_path, args.upload_name, args.hf_path)
|